

OPEN COMPONENT PORTABILITY INFRASTRUCTURE
(OPENCPI)

MERCURY FEDERAL SYSTEMS, INC.

MARCH 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-055

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2013-055 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

GEORGE RAMSEYER RICHARD MICHALAK
Work Unit Manager Acting Technical Advisor, Computing &
 Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2010 – OCT 2012
4. TITLE AND SUBTITLE

OPEN COMPONENT PORTABILITY INFRASTRUCTURE
(OPENCPI)

5a. CONTRACT NUMBER
FA8750-10-C-0194

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)
James Kulp, Shepard Siegel, John Miller

5d. PROJECT NUMBER
S3MF

5e. TASK NUMBER
OC

5f. WORK UNIT NUMBER
PI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Mercury Federal Systems, Inc.
1901 South Bell Street, Suite 402
Arlington, VA 22201

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2013-055
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2013-1075
Date Cleared:5 March 2013

13. SUPPLEMENTARY NOTES
14. ABSTRACT
The technical advantages of utilizing advanced computer processing components to meet real-time system requirements
are often offset by higher initial system development costs. This is further exacerbated because once a system is
developed, that system’s codes, tools and components are generally unique to that system, but must be redeveloped for
a different system configuration. The Open Component Portability Infrastructure (OpenCPI) is a previously developed
open source runtime framework for component-based, heterogeneous embedded computing that simplified the
programming of heterogeneous processing environments. Here the OpenCPI was extended to facilitate the integration of
different configurations of General Purpose Processors (GPPs), Graphics Processing Units (GPUs), and Field
Programmable Gate Arrays (FPGAs) in a multi-processing computing platform. This facilitates the advantageous
exploitation of each of these processor types in a complete system that can be tailored for a specific use. The key
functional gaps were filled that inhibited OpenCPI’s adoption, and the technology was hardened and matured to increase
the Technology Readiness Level (TRL). The “use/adoption/experimentation/trial” necessary to utilize OpenCPI was
simplified, and through its implementation, the advantageous transitions of these advanced computer processing
technologies for wider exploitation, particularly in the DoD community, are enabled.
15. SUBJECT TERMS
Heterogeneous Embedded Computing, FPGA, GPU, real-time systems
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

 62

19a. NAME OF RESPONSIBLE PERSON
GEORGE RAMSEYER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
 N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS
Section Page

1.0 SUMMARY ... 1

2.0 INTRODUCTION .. 3
2.1 Authoring Model .. 3
2.2 Data Plane .. 4
2.3 Platforms .. 5
2.4 Integration .. 5
2.5 Ease of Use .. 6
2.6 Maturity/Testing .. 6
2.7 Performance Measurements ... 6
2.8 Applications ... 7
2.9 Community .. 7

3.0 METHODS AND PROCEDURES .. 8
3.1 Authoring Models for Different Processing Technologies .. 8

3.1.1 New Authoring Model for GPUs. ... 8
3.1.2 VHDL Support for Existing HDL/FPGA Authoring Models. .. 12
3.1.3 Enhancements of Existing RCC Authoring Model. .. 13

3.2 Data Transport Technology ... 14
3.2.1 OFED/Infiniband for Component Data Transport. .. 14
3.2.2 Datagrams for Data Transport over Unreliable Protocols. ... 15
3.2.3 Ethernet Link Layer DataGram. ... 16
3.2.4 DDS for External Connections of Component Ports. ... 17
3.2.5 CORBA for External Connections of Component Ports. .. 19

3.3 Platform Adaptation and Enablement .. 19
3.3.1 Altera FPGAs and Altera Stratix4 Development Platforms. .. 20
3.3.2 Ettus N210 Platform. ... 23

3.4 Integration and Coexistence with Other Frameworks .. 24
3.4.1 Coexistence of OpenCPI with OpenCV. ... 24
3.4.2 OpenCPI with SCA. .. 27

3.5 Ease of Use Improvements .. 30
3.5.1 Component Libraries in the Search Path... 30
3.5.2 XML Applications without C++ Coding. .. 31
3.5.3 Scoring Preferred Implementations. ... 33
3.5.4 Property Values for Complex Data Types. .. 34
3.5.5 Automating Worker Deployment. ... 34

3.6 Testing Capabilities ... 34
3.6.1 Unit Test Framework for Infrastructure Code... 34
3.6.2 Unit Test Capabilities for Heterogeneous Components. .. 38
3.6.3 Protocol Monitors for FPGA Components Witten with the HDL Model. 38

4.0 RESULTS ... 40
4.1 Performance and Time Measurement .. 40

4.1.1 OCL Authoring Model Measurements. ... 40
4.1.2 Event Capture Synchronization across Platforms. .. 41

4.2 Application and Component Examples.. 42
4.2.1 Frequency Shift Key Radio Application. .. 42

ii

4.2.2 Documentation. .. 44

5.0 CONCLUSIONS .. 47

6.0 RECOMMENDATIONS.. 49

7.0 REFERENCES ... 50

8.0 LIST OF SYMBOLS, ABBREVATIONS, AND ACRONYMS ... 52

iii

LIST OF FIGURES
Figure Page

Figure 1. Authoring Model Pattern ... 8

Figure 2. C Function vs. OpenCL Kernel ... 10

Figure 3. OpenCL vs. OpenCPI Layering ... 11

Figure 4. OCL Worker in an OpenCPI Application ... 12

Figure 5. VHDL Worker Shell .. 13

Figure 6. DG/RDMA Driver Layers ... 16

Figure 7. Ethernet-based DataGram DataPlane Driver Layering ... 17

Figure 8. Tools for Interconverting Metadata between OpenCPI and DDS ... 19

Figure 9. OpenCPI HDL Build Flow .. 20

Figure 10. OpenCPI FPGA On-chip Infrastructure .. 22

Figure 11. Altera/Xilinx Interoperability Demonstration ... 23

Figure 12. Canny Edge Detection Application ... 25

Figure 13. Feature Detection Application ... 26

Figure 14. Optical Flow Application .. 26

Figure 15. SCA Layered on OpenCPI .. 28

Figure 16. Data Plane Adaptation in SCA Environments ... 28

Figure 17. SCA - OpenCPI Metadata Generation ... 29

Figure 18. Continuous Build/Test Dashboard Users... 36

Figure 19. Continuous Build/Test Dashboard Configuration ... 37

Figure 20. Protocol Monitors and Capture Workers ... 39

Figure 21. Viewing Timed Events with the GTKWave .. 42

Figure 22. FSK Radio Application ... 43

iv

LIST OF TABLES
Table Page

Table 1. OpenCL Implementations ... 9

Table 2. Utility Program Options .. 32

Table 3. Special Identifiers ... 33

Table 4. Unit Test Framework Evaluations ... 37

Table 5. OCL SLOC ... 40

Table 6. OCL Model Execution Time Comparisons .. 41

Table 7. Development Tools ... 45

Table 8. Open Source Documentation .. 46

Approved for Public Release; Distribution Unlimited.

1

1.0 SUMMARY

The transition of commercial and proprietary technology to an open source capability was previously

supported by the initial development [1] of the Open Component Portability Infrastructure (OpenCPI),

and that became the basis for this effort. The project described in this report built upon that OpenCPI

foundation, and in so doing establishes OpenCPI as an important and viable software development

framework.

This effort focused on the concepts of the software Component-Based Development (CBD). Software

applications can be assembled from snippets of codes that were originally written, tested and

implemented in other applications, which is expected to reduce the development costs of new

acquisitions. Heterogeneous processing allows the mixing and switching of different types of processing

technologies. The integration of different configurations of General Purpose Processors (GPPs), Graphics

Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs) in a multi-processing

computing platform facilitates the advantageous exploitation of each of these processor types in a

complete system that can be tailored for a specific use. The attributes of embedded processors make these

processors necessary to meet the requirements in many military acquisitions. This is reflected in not only

the additional processing power, but also in the Size, Weight and (electrical) Power (SWAP)

requirements. Proprietary restrictions and other considerations have resulted in the redevelopment of

legacy codes. To be fully available to the acquisition community, open source licensing is advantageous

for all aspects of this technology, including the codes. Appropriate restrictions are required for sensitive

technologies.

OpenCPI was developed to meet the challenges of effectively, productively, and efficiently exploiting

heterogeneous processing for embedded missions. OpenCPI employs a component-based development

methodology with supporting tools and a runtime environment for applications consisting of components

that can be executed on several different computing processor types. OpenCPI effectively crosses the

boundaries between these diverse processor technologies. Documents describing OpenCPI can be found

on the OpenCPI web site [2], which includes a preliminary technical summary document [3].

This effort developed component based systems, including well-defined, open, and portable application

programming environments for embedded, heterogeneous, and multi-processor applications. Also

developed were application structures, the connectivity between different computing processor types, and

hardware platform elements. A control plane model was developed that includes a Human/Computer

Interface (HCI). A management model was developed for the install/upgrade/uninstall and the

startup/shutdown of the application and hardware subsystems. The specific baseline software platform

that was developed has capabilities in several areas critical to the embedded Department of Defense

(DoD) needs, including communications management that is suitable for fabric-based interconnection

technologies.

This project addressed the key functional gaps in the original open source prototype that have inhibited

OpenCPI adoption. The technology was hardened and matured to increase the Technology Readiness

Level (TRL). The barriers to its development, testing, adoption and implementation were addressed, and

the suitability for applying OpenCPI to specific applications was determined.

The work proceeded according to technical, staffing, partnering and funding dependencies, but is

described here in a logical technical breakdown, rather than following the actual timeline. Since OpenCPI

is based on and embraces the principles of open source software, the software, firmware, FPGA codes,

tools, and documentation were all posted on the Opencpi.org web site [2] and released under an open

Approved for Public Release; Distribution Unlimited.

2

source license0F

1
. The key technical results of this work were embodied in the new and improved evolution

of OpenCPI, as it addressed a combination of technical gap filling, hardening and ease-of-use

enhancements.

In addition to these technical enhancements, several integration and application experiments were

performed to assess and demonstrate how OpenCPI could coexist with other relevant frameworks for

image and software radio processing, and how well OpenCPI served as an application environment for

specific applications. These efforts included instrumentation and measurements.

Outreach and community building exposed OpenCPI to additional users inside and outside of the defense

and intelligence communities. Some of this was based on ad hoc meetings and briefings, but there were

several formal briefings of OpenCPI at conferences.

1
Lesser GNU Public License 3 (LGPL3)

Approved for Public Release; Distribution Unlimited.

3

2.0 INTRODUCTION

This project consisted of two phases over 25 months that spanned from September 2010 through October

2012. This project is described as one project, since the second phase of the effort was an extension of

the first phase, and was a six-month application technology transition facilitator study.

The underlying OpenCPI baseline architecture was a software-defined platform, originally motivated by

the Department of Defense (DoD) Programmable Communication Terminals. It was based on and was

compliant with the Software Communication Architecture (SCA) developed in the Joint Tactical Radio

System (JTRS) program [4].

This report describes improvements to the capabilities and applicability of OpenCPI, and to the expansion

of the actual community of users. OpenCPI addresses several dimensions of diversity and heterogeneity

in embedded systems, and this project addressed each dimension in turn by expanding the range of the

supported configurations.

In extending OpenCPI there was a risk that the extension would not be completely compatible with the

existing software architecture. The internal OpenCPI architecture was adjusted to encompass these new

extensions. A brief introduction to each effort is included here, with a more detailed description in later

sections.

2.1 Authoring Model

An Authoring Model is based on a common software language and tool to provide the translation of a

common software language to other processor-type specific languages. An Authoring Model also

addresses abstract conceptual executions and communications. Here the communications are further

complicated by the requirement that some component interfaces have multiple language translations, as

different components may each have their own specific software language. Adding to this complexity is

that the Authoring Model must handle diversity, as there may be more than one way to correctly program

components that achieves the same functionality.

The Resource-Constrained C-language (RCC) model is a basic and simple model for writing components

in the C language. At a conceptual level, this same model could be rendered and supported in other

programming languages including C
++

, Java, and Python. Here the language coverage of the RCC model

was not expanded beyond C, but was simplified and expanded in several ways based on the experience

that was gained from our writing new components and applications.

The Hardware Description Language (HDL) is an Authoring Model which supports the writing of codes

for FPGA and Application-Specific Integrated Circuit (ASIC) processor components. As used here, the

HDL was applied to the Verilog, the Very High Speed Integrated Circuit (VHSIC)-Hardware Description

Language (VHDL), the System-Verilog, the Bluespec System-Verilog, and the System-C processor-

specific languages. At the start of this project OpenCPI supported the Verilog language for the OpenCPI

HDL Authoring Model. A major effort here led to supporting the VHDL language, since an application

was received that was written in VHDL. This is an example of adding language support to an existing

Authoring Model.

A new Authoring Model was designed and implemented for components executing on GPUs, which

extended the OpenCPI’s processor heterogeneity. This effort targeted the Open Computing Language

(OpenCL) dialect of C, which is supported by most graphic and some multi-core processor vendors, and

is called the OpenCL Authoring Model (OCL). It can be conceptually applied to other GPU-oriented

languages and environments such as NVIDIA’s Compute Unified Device Architecture (CUDA1F

2
). Efforts

2
 CUDA is a parallel computing platform and programming model created by NVIDIA, and implemented

on NVIDIA GPUs.

Approved for Public Release; Distribution Unlimited.

4

for a GPU Authoring Model combined conceptualizing a new Authoring Model with specifically

prototyping it in the OpenCL language dialect of C using the associated low level Application

Programming Interfaces (APIs).

In summary, the RCC Authoring Model was enhanced to simplify specific use cases, and the HDL model

[5] was extended with support for the VHDL language. A new GPU-oriented Authoring Model was

defined, and OpenCL was the target language.

2.2 Data Plane

OpenCPI software that supports the data plane mechanism is a transfer driver. As defined in the OpenCPI

Technical Summary [3], a data plane is the means by which system components communicate with each

other at runtime. The different components and parts of real heterogeneous embedded systems use several

mechanisms to connect with each other. The top-level distinction among such communication methods is

whether the communications are collocated. It is advantageous for collocated communications to occur

among processor components in the same execution environment. To achieve this, an Authoring Model

must maximize the efficiency of collocated communications.

This project developed support for additional key data plane scenarios that had not been previously

supported. A new data plane mechanism was implemented for clustered applications, which targeted the

remote Direct Memory Access (DMA) mechanisms and APIs promulgated by the Open Fabrics

Enterprise Distribution2F

3
 (OFED), which is typically deployed over either 10 Gbps or 40 Gbps Infiniband

hardware in clustered environments. As with all of the OpenCPI transfer drivers, this is transparent to

how the components are written in the Authoring Models. This process allowed for collocated

components that were executed on a single processor, or on separate processors comprising a cluster

connected with Infiniband, to execute without being changed or recompiled.

A datagram is a self-contained, independent entity of data that carries sufficient information to be routed

from its source to a destination processor without the reliance of earlier exchanges between its source, the

destination processor and the transporting network. Support was developed for datagram transports by the

OpenCPI data plane, which additionally guaranteed message delivery and the order of the message

delivery. An application-level communication system to support these datagram transports is the Network

File System (NFS). Similarly, the Remote Direct Memory Access (RDMA) model of communication [6]

used by the OpenCPI data plane can benefit from directly using datagram transports such as User

Datagram Protocol (UDP)/Internet Protocol (IP), as well as the link layer (L2) Ethernet Protocol. Support

for an FPGA platform by Ethernet transport was also developed.

Another class of the OpenCPI data plane communication is components communicating to the outside

world. There are scenarios where applications require the inputs or outputs of a component’s port to

communicate outside of the OpenCPI environment, and not to another OpenCPI component. A different

driver type provides a bridge between the OpenCPI data plane system and the external

communication/middleware systems. Two such external connections were developed that allowed

applications to connect a component port to Data Distribution Service 3F

4
 (DDS) and to the Common Object

Request Broker Architecture 4F

5
 (CORBA) middleware. These bridges allowed the OpenCPI applications to

communicate with other middleware systems without changing a line of code or recompiling components.

3
 http://www.openfabrics.org.

4
 publish-subscribe data to other DDS applications

5
 Send and receive messages are communicated to external applications using CORBA.

Approved for Public Release; Distribution Unlimited.

5

2.3 Platforms

Embedded systems are built with a wide range of technologies. The OpenCPI model of a platform

includes the processors in a system, as well as the ways that the processors are interconnected. Each class

or type of processor, operating system, and compiler tool set is specifically supported. The processor

interconnection technologies are supported for the data-plane communications, and some of the

communication paths are also supported for the control-plane communications. There were two major

new platform efforts in this project, the support for the Altera FPGA platforms and associated tools, and

specific support for the application-oriented platform Ettus N210 Universal Software Radio Peripheral.

The Altera efforts advanced the support for the FPGA vendor Altera to bring it to a level similar of that of

the existing OpenCPI support for the FPGA vendor Xilinx. This included both device and hardware level

support, including the PCI bus/fabric connections, the memory controllers, and tool support. The

inexpensive tools that were available were specific to each of these two vendors.

The Ettus N210 platform efforts were a combination of supporting a new FPGA processing chip, the

Xilinx Spartan 3A-DSP3400, and associated tools. Also supported were the Ethernet interconnect for the

control and the data planes, and the FPGA implementation of the datagram protocol. The Input-Output

(IO) devices required by the application were also supported, including the attached 2-channel quadrature

Analog-to-Digital Converter (ADC).

The basic generic support for the FPGA platforms was also enhanced to simultaneously discover and

support the multiple platforms connected either via PCI Express fabrics or link layer Ethernet

connections. This also included a Universal Unique Identifier (UUID) mechanism for determining

whether the currently loaded FPGA bitstream was the one needed by an application, which was reloaded

as needed.

2.4 Integration

Even though mixed application-specific frameworks frequently embody lower level middleware and

execution models that are incompatible with each other, these frameworks are commonly used in

embedded systems. OpenCPI is non-application-specific and can be used across a range of application

areas. Several experimental tasks were undertaken to combine OpenCPI with other frameworks to

determine when coexistence synergies were possible.

The widely used open source computer vision library Open Computer Vision (OpenCV) was

experimentally integrated with OpenCPI in collaboration [7] with the Massachusetts Institute of

Technology. This OpenCV application was embedded inside of OpenCPI, and then ported. OpenCPI

image-processing components were experimentally determined to directly reproduce those of OpenCV.

This not only showed coexistence, but also demonstrated that the transfer of an algorithm code from one

open source project to another was possible. This new set of image processing components was then

added to the OpenCPI component library.

The Software Communication Architecture (SCA) is a DoD-created middleware framework for software

radio applications. It was an important motivator for the early OpenCPI work, and established the value

of having component-based designs in embedded DoD applications. When OpenCPI was created in an

earlier project, it was developed as a stand-alone capability that did not rely on other middleware. In this

project a preliminary integration was performed to prove that a SCA-compliant system could be created

using OpenCPI as the underlying component, which avoided any inefficiencies of completely layering

one application on top of the other. Since the SCA did not have a heterogeneous component model, non-

GPP processors were supported in this integration by creating high-level proxy CORBA objects for the

underlying OpenCPI components. The SCA requires all of the components to be represented as CORBA

objects.

Approved for Public Release; Distribution Unlimited.

6

2.5 Ease of Use

Efforts were undertaken to simplify the user experience, and other efforts focused on first-time users.

Earlier efforts focused on the process of creating components. Here several significant features were

added to simplify and clarify how to describe an application comprised of controlled and executed

components. These included an updated and simplified API for the main program to create, connect, and

control components in an application, a library path mechanism to enable components in an application to

be found in a number of different component libraries, and mechanisms to allow convenient textual

component property values to be applied to components, including sequences, structures and

multidimensional arrays.

Another effort focused on enabling entire applications to be described in the Extensible Markup Language

(XML) and executed by a utility program, which entirely avoided writing or compiling top level

applications for the main program. These included the XML attributes that determine when an

application was completed, and an expression-based scoring system for selecting among the alternative

feasible component implementations found by the library search path mechanism.

2.6 Maturity/Testing

Increasing the maturity and robustness of OpenCPI was an important goal of this project. Early in the

project a number of unit test and continuous integration system tools were evaluated, and the gtest5F

6
 and

the Hudson6F

7
 [8] were selected. Both of these tools were installed and configured, which resulted in

additional testing capabilities in the OpenCPI repository.

A major improvement in the robustness of OpenCPI was achieved as new components, examples, and

applications were developed and tested, and this resulted in updated OpenCPI software. Several FPGA

and software component unit testing capabilities were also developed that included FPGA elements for

inter-component protocol monitoring, and generic unit testing for both software and FPGA

implementations utilizing the same component.

2.7 Performance Measurements

Performance measurements were necessary so that performances could be determined during component

and application development. Platform/infrastructure developers and system engineers need to understand

the system level performance characteristics in order to achieve the correct and appropriate performance

evaluations. General measurements are necessary when evaluating the OpenCPI framework for use in

other projects.

At the start of the project, OpenCPI had some timekeeping and event recording capabilities. The

timestamping of some events inside FPGA platforms, while synchronized with GPS time, was not

synchronized with the software event timekeeping subsystem. These time-bases were enhanced to provide

synchronized time across the FPGAs and other software processors in a system. Events that were

recorded based on different system clocks were correlated in output mechanisms utilizing a GTKWave 7F

8

waveform viewer and an Excel spreadsheet. The granularity and accuracy of software-timed events was

also improved.

6
 Google’s C++ unit testing framework

7
 since renamed Jenkins, a continuous integration and build server

8
 GTKWave is a fully featured GTK+ based waveform viewer which reads Fast Simulator Trace (FST),

interLaced eXtensible Trace (LXT), LXT2, Verilog/VHDL Zipped Trace (VZT), and GHW (format
generated by the open source VHDL simulator GHDL) files and standard Verilog VCD/EVCD (format

specified in IEEE-1364 and generated natively by Verilog simulators) files, and allowed their viewing.

Approved for Public Release; Distribution Unlimited.

7

To capture events during component executions, new event capture instrumentation points were inserted

into the runtime infrastructure. As part of the protocol monitoring enhancements for testing FPGA

components, the capability was added to capture and timestamp Input-Output (I-O) events at each of the

component ports. To fully exploit the downstream display and analysis tools, software was developed to

convert the event data to standard formats. These standard formats included the Value Change Dump

(VCD) for hardware simulation viewers, and the Comma Separated Value (CSV) files formatted for

import into the Excel and other tools. This provided additional comprehensive measurement capabilities

for the component, the application, and the infrastructure elements.

2.8 Applications

Several OpenCV applications were re-implemented under OpenCPI as part of the integration effort. These

not only demonstrated the OpenCPI suitability for such image processing applications, but also provided

examples and test applications for other features, including processor allocation capabilities. Related to

the application-level ease of use efforts that were previously mentioned, a load-balancing capability was

created that allowed an application’s software components to be deployed to more or fewer processors.

This affects the trade-off between improved performances and the sharing of limited computing resources

within a computing system with other applications.

Preparations were made for the implementation and porting of a Signals Intelligence (SIGINT)

application. Several front-end components of the applications pre-existed, including the Digital Signal

Processor (DSP) functions implemented inside the Ettus N210 platform. This work defined the

heterogeneous OpenCPI components that would implement the same functionality 8F

9
 in FPGAs, GPPs, and

GPUs. Several of these were implemented in software that then performed the functions of the FPGA

versions. Before this task was completed, the SIGINT application was determined to be unavailable, and

focus shifted to a Frequency Shift Keying (FSK) radio application, which reused a few of the components

that were created for the SIGINT application. The second application required an additional major effort

in VHDL support for the HDL Authoring Model.

2.9 Community

To build a community of users, two conference workshops were presented and conducted with OpenCPI.

The first conference was the Wireless/Software Defined Radio (SDR) Innovation Forum on November

30, 2010 at Arlington VA, and the other was the 19th Annual International IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM) in May 2011 at Salt Lake City, UT. Both

conferences were well attended, and the workshops were well received.

A community and interested-party meeting was held in January 2012, and was hosted by the MITRE

Corporation in McLean, VA. This meeting was attended by a mixture of academic, government and

industry representatives. Originally it was planned to also participate in the NVIDIA GPU Technology

Conference in October 2011, but that conference was postponed by six months, and caused scheduling

difficulties.

Another effort to enhance the community was a major upgrade to the OpenCPI web site [2], which

provided ease of navigation to the documentation and source code repository, and included access to the

bug-tracking subsidiary site.

9
 e.g. Digital Down-Converters (DDCs), complex mixers

Approved for Public Release; Distribution Unlimited.

8

3.0 METHODS AND PROCEDURES

3.1 Authoring Models for Different Processing Technologies

OpenCPI Authoring Models (OCLs) represented different ways to write worker 9F

10
 using languages and

APIs that allowed the effective use of a class of computing technologies. For some models, a specific

programming language was implied10F

11
, whereas for others 11F

12
, the model was separate from and independent

of the actual language used. Currently there is no single model 12F

13
 that exploits all of the processing

technologies, although the Authoring Models must coexist and interoperate. Thus, the Authoring Models

were developed to be interchangeable in an application without having to make top-level application

changes, and without having to make changes to other application components.

Each model fits a pattern in which four types of interactions are defined, as shown in Figure 1. These

interactions are the Management Interface, the Inputs, the Outputs, and the Local Services. The HDL

Authoring Model was specifically written for FPGAs, and was written in the Verilog, the BlueSpec, the

VHDL, and the System-C languages. The RCC Authoring Model [9] was written for C-based nodes that

included embedded Central Processing Units (CPUs), microcontrollers, and DSP environments.

Figure 1. Authoring Model Pattern

3.1.1 New Authoring Model for GPUs.

A new OCL was defined and implemented for a rapidly emerging and adopted class of highly parallel

processors that were originally developed for graphics rendering in workstations. Today GPUs are

commonly being used for non-graphical tasks. The GPUs are called General Purpose GPUs (GPGPUs)

10

 a component implementation
11

 e.g. Resource-Constrained C-language (RCC)
12

 e.g. Hardware Description Language (HDL)
13

 language/Application Programming Interface (API)

Approved for Public Release; Distribution Unlimited.

9

when they are used for non-graphics applications. In this project a GPGPU Authoring Model was created

to exploit this class of processors.

The first challenge was to confirm that such an Authoring Model was feasible in terms of the interactions

with the other existing OCLs. The second challenge was to select a language and an API that was useable

across the available GPUs. The languages that the GPUs are programmed in, the GPU’s APIs, the GPU’s

drivers, and the GPU’s hardware-level details are vendor-specific and proprietary.

An abstract Authoring Model would require that each of the proprietary APIs, drivers, and hardware have

their own specific model. Each abstract Authoring Model would then be defined and implementable by

only one particular vendor’s set of toolkits. This would result in a situation where heterogeneous

requirements would be difficult to implement, document, maintain, and use; and also would be non-

portable between components from different vendors.

Apple and others in the Khronos Group13F

14
, which had standardized the Open Graphics Library (OpenGL)

APIs, defined a new language called C subset and a common API. For the first time programmers were

enabled to write with a single language and API, and execute the resultant code on different vendor

GPUs. This new standard was OpenCL. When this was completed in 2009, the early implementations on

GPUs were weak, incomplete, and did not fully exploit the computing capabilities of the GPUs. This

situation improved during 2011, and further in 2012, so that the promise of write once and then execute

on different GPUs is now close to reality. In general the OpenCL-based codes can move between vendors,

although further hand tuning is usually required to achieve the best performance. Table 1 lists the vendors

which support OpenCL on their GPUs and multi-core processors.

Table 1. OpenCL Implementations

Vendor Hardware Link

NVIDIA All recent NVidia GPUs www.nvidia.com/object/cuda_the Opencl_new.html

AMD AMD GPU cores & x86 cores developer.amd.com/gpu/atistreamsdk/pages/default.aspx

IBM IBM Cell/Power architectures www.alphaworks.ibm.com/tech/the Opencl

Intel SSE 4.1+ http://software.intel.com/en-us/articles/intel-the Opencl-sdk/

The OpenCPI model combined the best of both, with OpenCL providing a programming methodology for

parallel computations that are portable across different GPU and CPU architectures, and OpenCPI

supporting the replaceable component models across the processor types.

14

 http://www.khronos.org/opencl/

Approved for Public Release; Distribution Unlimited.

10

The key attribute of OpenCL is that it was derived as a subset/superset from International Organization

for Standards (ISO) C9914F

15
. Recursion, function pointers, and functions in the C99 standard headers are

not supported. The preprocessing directives defined by C99, and some additional built-in data types

including images and vectors, are supported. Also, the geometric functions are supported that access

elements relative to the context.

The context of an OpenCL function is referred to as a kernel or a work item. An OpenCL application is

performed by partitioning the processing to be done among different processors. The number of work

items is determined by selecting dimensional indices. There is a physical limit on the maximum number

of work items. These work items are then executed in parallel. A typical example is that the workspace is

an output image, and each work item is the work necessary to compute some portion15F

16
 of that image.

OpenCL is composed of a C99-based dialect16F

17
 and the APIs for writing and executing data/task parallel

compute kernels. OpenCL focuses on its portability by trading off its convenient usability. Our two code

examples in Figure 2 illustrate the difference between a simple C function and the analogous OpenCL

kernel.

Figure 2. C Function vs. OpenCL Kernel

These existing example OpenCL GPU kernels were reusable in OpenCPI with a simple wrapper that did

not adversely affect performance. While OpenCL also included a host CPU API 17F

18
 for staging the OpenCL

kernel on a GPU, the OpenCPI Component Author using the OCL did not use these APIs, but rather

15

 C99 is an informal name for ISO/IEC 9899:1999, a past version of the C programming language
standard. It extended the previous version C90 with new linguistic and library features.
16

 tile, pixels
17

 A dialect of C that was adapted as an ANSI standard in 2000.
18

 executing, synchronizing, and data passing

Approved for Public Release; Distribution Unlimited.

11

executed in the background by the OpenCPI infrastructure code. This was simpler to program, as the

complexity to implement OpenCL was greater than the OCL Component Author. Additionally, OpenCPI

maintained commonality across the heterogeneous technologies. OpenCPI thus achieved interoperability

between the different types of components communicating with each other and portability as the same

code executed on different GPUs/multicores. There were common development flows of the components,

of the component-based applications, and of the control applications. There was a common description for

the alternative implementations including FPGAs and GPUs. There was also interchangeability, as for

example GPU processing could be substituted for with FPGA processing.

The OCL model supports the kernel built-in functions in OpenCL for certain mathematical and

synchronization functions, does not require or expose the OpenCL host API, and limits the required

OpenCL knowledge. Host code is not required, as only device-side kernel functions need to be written.

Figure 3 presents a comparison of layering of OCL vs. OpenCPI for a generic application. The OpenCPI

container library handles all of the host functionality, including the loading of the binary code into the

device and the allocation of memory to contain port buffers and property data. Also, the container library

determines when to execute device-side kernel code based on state transitions and buffer availability.

Figure 3. OpenCL vs. OpenCPI Layering

Approved for Public Release; Distribution Unlimited.

12

The container for the OCL workers acts like other containers [10]. The control application that executes,

configures and connects the workers is generic, and not specific to the OCL. The Authoring Model is

completely described in the OCL Model Reference document [11]. Implementing the OCL involved

enhancing two development tools, as well as the runtime code. The existing ocpigen tool [12], which was

responsible for the code generation in all of the Authoring Models, was augmented to do the code

generation. This included generating custom property structures based on all of the defined property data

types and names, as well as generating a custom worker context structure that was based on metadata.

The worker structure included the structures for all of the defined OpenCPI ports and the requested

memory regions. The skeleton generation included stub functions for all of the entry points. Figure 4

shows an OCL worker executing inside an OCL container in an OpenCPI application that also includes

other Resource-Constrained C-language (RCC) components executing in the RCC container.

3.1.2 VHDL Support for Existing HDL/FPGA Authoring Models.

The existing Hardware Description Language (HDL) Authoring Model was well-defined by the language-

independent Open Core Protocol-International Partnership (OCP-IP), whose interface specifications

mapped naturally to other HDLs, including Verilog, VHDL, System Verilog, Bluespec System Verilog

(BSV), and System-C. Previously OpenCPI HDL partially supported the generation of Verilog code in

cases when the external interface18F

19
 of a HDL worker was rendered in Verilog.

19

 sometimes called the black box module declaration

Figure 4. OCL Worker in an OpenCPI Application

Approved for Public Release; Distribution Unlimited.

13

Based upon the experience and analysis of the VHDL application, it was determined that VHDL support

in OpenCPI needed to go beyond generating external module definitions 19F

20
, but also needed to generate a

shell that significantly simplified authoring a worker. This was especially true when wrapping existing IP

Blocks to execute under OpenCPI [13]. The shell significantly reduced the complexity by ensuring that

all of the exterior interoperability interfaces met the OCP-IP defined signal requirements, and provided a

more worker-specific and simpler internal interface. This VHDL shell concept is described in Figure 5.

Currently Verilog supports the creation of a module declaration for an actual deployable worker, as

shown on the outside of the blue layer that is represented by the red and blue arrows. VHDL also

generated code for the blue shell code, as well as the entity declaration of the authored worker that must

be implemented. If there is existing legacy VHDL entity architecture, then it is wrapped or modified to

properly implement the generated inner entity represented by the gold inner box. Otherwise code is

written to fill the gold box.

The building scripts for writing the VHDL workers in the OpenCPI component library synthesized the

shell and the inner worker into a deployable synthesized module. Since this type of code generation

significantly simplifies the job of implementing an OpenCPI worker, Verilog support in OpenCPI was

similarly enhanced. For example, the green interfaces were much simpler than the red/blue interfaces,

since the green interfaces were worker-specific.

3.1.3 Enhancements of Existing RCC Authoring Model.

An Authoring Models simplifies code writing by reducing the needed Source Lines of Code (SLOC).

This is accomplished in two different ways. Codes generated by tools are developed for the worker and

for the container. Also, the descriptive metadata is separated from the programming language, which

results in a runtime-version of the same metadata information being made available to the infrastructure’s

20

 i.e. the entity in VHDL

VHDL Worker Shell

WMI WSI M

WCI

M

Control the worker

Consume
Data

S
S

S

S

SSS
S

M OCP Master

OCP Slave

SSS
S

Produce
Data

VHDL Authored Worker

 Control and Configuration

 Data/FIFO

Input
 Data/FIFO

Input

Figure 5. VHDL Worker Shell

Approved for Public Release; Distribution Unlimited.

14

containers. This results in an implicit delegation of the code from the worker to the container. A simple

example of this is the RCC execution condition, where the determination of when a worker executed is

not made in the worker with the typical blocking or timeout APIs, but rather in the container based on the

simple run-condition data structure.

As a result of the preparation of the test, example, and application components, three enhancements were

implemented that reduced the RCC worker’s complexity and the SLOC. The first was for the RCC

worker to indicate when the buffers had been consumed and produced, and that the worker had completed

all processing. This was indicated by returning the value RCC_ADVANCE_DONE from the execute

function of the worker. Adding this fairly simple capability allowed a typical worker to avoid maintaining

an extra state while it was still processing data. This reduced the lines of code and the amount of

processing required, since it eliminated a final context switch in the lifecycle of the worker.

A second enhancement was to provide a container callback function that allowed the worker to build an

error reporting string using a sprint-style function, where the container took responsibility for error string

storage. This allowed simple workers that reported error conditions to avoid storage management for

these strings, and in most cases avoided the release method entirely.

The final enhancement was to clarify and simply the handling of dynamic execution conditions. A

worker could change the execute condition to the NULL execute condition, which restored the initial

default implied execute conditions. This allowed the workers with dynamically controlled execution

conditions to easily use the default rather than having to recreate it, which further reduced the lines of

code.

3.2 Data Transport Technology

Many real embedded systems have more than one processing element. A data path between the

processing elements is required to communicate data and messaging. The diversity of the interconnect

technologies for this communication was a major challenge faced by OpenCPI.

The appropriate data-plane and data transfer drivers in OpenCPI were optionally loaded when an

application’s system targeted such hardware and drivers. The driver for a processor connection within a

system was then deployed. Which driver was used for a particular inter-component connection was

transparent to the component source code.

3.2.1 OFED/Infiniband for Component Data Transport.

In 2009 more than 40% of the Top500 systems [14] used the Optical Fabrics Enterprise Distribution

(OFED)/Infiniband for their server and storage connectivity. The OFED is an important embedded

application that utilizes a cluster approach with rack mounted servers. This application is connected with

either high speed switched Infiniband or Internet Wide Area RDMA Protocol (iWARP) interconnects that

execute at speeds of up to 40 Gb/s. The Network Interface Controllers (NICs) for the Infiniband

implementation include remote DMA in the hardware that is maximized for performance. Also the

application is designed to use a minimum number of processors. This project supported OpenCPI

development for such interconnects by allowing its components to efficiently communicate between the

processors and/or the subsystems that were connected by this class of hardware.

The OFED enabled drivers and APIs to be selected to effectively target this class of interconnect

hardware. This targeted application was an open source distribution of hardware-assisted RDMA

hardware drivers and a thin software layer called Infiniband Verbs which unified support across the

vendors. The layering was similar to that of OpenCL, in that a thin layer was added to simplify the

normalization behavior across the vendors without significantly adding to the overhead and abstractions.

OpenCPI’s model of message passing between the components was mapable to this layer.

The Linux-based, open source OFED is a broad distribution of the RDMA switch fabric, and the cluster-

related software includes layers, drivers and tools. The hardware drivers include those from Mellanox,

Approved for Public Release; Distribution Unlimited.

15

Hewlett Packard, Cisco, Intel, and Chelsio. The middle layer verbs that were targeted exploited hardware

vendor drivers. This same layer was targeted by other middleware for parallel computing, such as the

Message Passage Interface (MPI).

The test environment included a software-based low-level driver Soft-RDMA over the Converged

Enhanced Ethernet (Soft-RoCEE), which emulated a hardware-assisted Network Interface Card (NIC)

that executed Infiniband protocols over link-layer Ethernet hardware. The underlying driver did not

adversely impact the OpenCPI support code, and as with other OpenCPI dataplane drivers, had no impact

on the components’ source codes.

The driver enabled communications between the components executing on a RedHat 64-bit system and a

Community Enterprise Operating System20F

21
 (CentOS) 32-bit system. Since the verb header file was

common across the vendors, the OpenCPI driver was compiled regardless of the hardware and drivers that

were available in the system. Also, all of the versions of the OFED were compliable.

3.2.2 Datagrams for Data Transport over Unreliable Protocols.

The basic communication model for the OpenCPI data-plane drivers was the Remote Direct Memory

Access (RDMA), where a process tasks the underlying API to transmit data at some offset from a local

memory to a remote memory area that is at some other offset. The DMA interconnect fabrics included

PCI Express and RapidIO. The RDMA APIs included the OFED/Infiniband Verbs. The underlying

software and hardware layers guaranteed delivery of the RDMA transfers.

Prior to this project, OpenCPI was a simple sockets-based RDMA data-plane driver which transmitted

messages over Transmission Control Protocol (TCP)/ Internet Protocol (IP) sockets. Although TCP/IP

was said to guarantee delivery, this sockets-based data-plane driver issued a RDMA command descriptor

to send the data to the TCP/IP socket, and then assumed that the delivery occurred at the other end.

Ethernet support was developed for communications between an FPGA process and a Linux/x86 process

for when it was infeasible to use TCP/IP. However, this protocol was too complex to implement in most

FPGAs, and required an unreliable datagram-based RDMA transfer protocol for OpenCPI.

When either a TCP stack or an User Datagram Protocol (UDP)/Internet Protocol (IP) is available, the

UDP provides datagram services. Some FPGAs also directly implemented an UDP. Regardless of the

underlying datagram service, mapping the RDMA onto an unreliable datagram service was required. This

protocol was defined as the DataGram (DG)/RDMA. It enabled datagram frames to carry multiple

RDMA-write requests, and provided for frame-level acknowledgements and retransmissions. The

RDMA-over-Converged Enhanced Ethernet (RoCEE) datagram protocol defined by the Infiniband Trade

Association was too complex to implement in the time frame of the project. This is a good candidate for

future efforts since there is hardware support on x86 processors that implements it within the Mellanox

Ethernet NICs.

21

 A free operating system distribution based upon the Linux kernel.

Approved for Public Release; Distribution Unlimited.

16

To test the software implementation of the DG/RDMA protocol, it was first layered and mapped on top of

the UDP/IP. This provided a wide-area-routable datagram capability when an IP stack and routing is

available, and is a logical implementation when both sides of the inter-component.

To test the software implementation of the DG/RDMA protocol, it was first layered and mapped on top of

the UDP/IP. This provided a wide-area-routable datagram capability when an IP stack and routing is

available, and is a logical implementation when both sides of the inter-component conversation are

implemented in software. This layering over UDP was accomplished in 200 SLOC and served as an easy-

to-debug test environment for the basic software DG/RDMA implementation, which was 1000 SLOC.

This effort not only provided a test-bed for the DG/RDMA protocol definition and software

implementation, which was also useful as a mechanism that any inter-component connection could be

assigned to. This protocol layering is illustrated in Figure 6.

3.2.3 Ethernet Link Layer DataGram.

To provide an OpenCPI data-plane connection for the Ettus N210 platform that was required by the FSK

demonstration platform, a protocol was developed for Ethernet links so that the FPGA-based components

executing on the N210 could communicate with the components executing on the host x86 machine. The

host executed Red Hat Enterprise Linux (RHEL) 5. Since the use of minimum resources was within the

spirit of SWAP, this was implemented on a Xilinx Spartan 3A-DSP-3400 FPGA on the N210 platform.

The DG/RDMA protocol was directly implemented over the link-layer Ethernet rather than over the

UDP/IP, since this required fewer FPGA resources, would result in a lower latency, and would possibly

have higher throughput.

Container Y

DG/RDMA
Driver

PCI
Driver

Worker
3

Worker
4

Container X

DG/RDMA
Driver

Worker
1

Worker
2

Container Z

PCI
Driver

Worker
5

Worker
6

Control API for Applications

Component-based application
Using Control API or XML

Container
proxy

Container
proxy

Container
proxy

The Data Plane

The Control Plane

UDP Mapping

IP/UDP

UDP Mapping

IP/UDP

Data
Plane

Drivers

Figure 6. DG/RDMA Driver Layers

Approved for Public Release; Distribution Unlimited.

17

This required an alternative software mapping from the DataGram (DG)/RDMA directly onto the link

layer Ethernet, and this entirely bypassed the IP stack. This alternative mapping of the DG/RDMA

protocol to the Ethernet in software was approximately 200 SLOC, and also required either executing all

of the OpenCPI software in the Sudo21F

22
 mode with root privileges, or using the OpenCPI Linux kernel

driver. The OpenCPI Linux kernel driver was enhanced to provide a privileged path directly to the

Ethernet to avoid the privilege requirement. This completed the software aspects of using the DG/RDMA

protocol over the Ethernet link layer, and either UDP/IP or direct Ethernet could be used to transport the

DG/RDMA datagrams to support datagram-based RDMA between the OpenCPI components. In Figure 7

is a diagram of an Ethernet link layer, which was an alternative to UDP/IP.

After the software driver and mapping were tested between two computers on an Ethernet link, the

DG/RDMA protocol was implemented in FPGA code to execute on the Ettus N210 FPGA. While an

UDP/IP implementation was also possible on the FPGA, this was not needed here since the Ettus N210

included an attached front end.

3.2.4 DDS for External Connections of Component Ports.

Although OpenCPI provided an environment where component applications spans a heterogeneous set of

processors connected by a heterogeneous set of interconnect structures, there are important cases where

components will need to communicate outside this environment rather than to just other components

inside that environment. In OpenCPI, an application’s component ports are connected to the external

services. This is illustrated by comparing one application that has internal connections between its

components with another application that publishes data through an external connection into a separate

22

 Sudo is a program for Unix-like computer operating systems that allows users to run programs with the
security privileges of another user.

Container Y

DG/RDMA
Driver

PCI
Driver

Worker
3

Worker
4

Container X

DG/RDMA
Driver

Worker
1

Worker
2

Container Z

PCI
Driver

Worker
5

Worker
6

Control API for Applications

Component-based application
Using Control API or XML

Container
proxy

Container
proxy

Container
proxy

The Data Plane

The Control Plane

Ethernet Mapping

Raw Ethernet

Data
Plane

Drivers Ethernet Mapping

Raw Ethernet

Image processing File_read Display Look for red trucks Video feed Publish to tactical users Application with all internal connections Application with all internal connections

Figure 7. Ethernet-based DataGram DataPlane Driver Layering

Approved for Public Release; Distribution Unlimited.

18

middleware regime. In OpenCPI, external connections are achieved via API or XML by providing a

Universal Resource Locator (URL) for the external connection. This indicates that a particular component

port in the application should be connected to the communication service indicated by the URL.

The Data Distribution Service (DDS) is an industry standard from the Object Management Group

(OMG), the same organization that standardized the CORBA and the Unified Modeling Language

(UML). DDS provides efficient local and/or wide area publish/subscribe messaging with control over the

quality of service and the data refresh rate. Since it is used in several DoD applications, it was a natural

choice for the first supported external connection service for OpenCPI. It is especially useful for

dissemination to many users/subscribers when multicast communication patterns are preferred. It also

allows the applications using it to be written in multiple languages.

This project implemented both the external connect capability and the DDS external connection

capability. DDS support was implemented so that a component’s output could be a DDS publisher that

disseminates to external DDS-based subscriber applications without changing either the component

source code or the compiled code. Also, a component’s input can be a DDS subscriber that receives input

from an external DDS-based publisher application without changing the component source code or the

compiled code. DDS can also be used for transport inside a distributed OpenCPI application, especially

for distributed fan-out/multicast configurations. This is another transport way for the components to

communicate with each other.

A major challenge in implementing support for external DDS connections was the data interoperability

between the OpenCPI messages and DDS. DDS applications publish/subscribe to topics which have

CORBA IDL defined data types/structures. The OpenCPI component and connected external DDS

applications must have a common data definition. Two tools were created to interconvert the data type

metadata between OpenCPI and DDS. Since both OpenCPI and DDS used the basic data type

abstractions of IDL as are used in CORBA, this was possible. This allowed the external DDS connection

driver to efficiently interconvert the data message formats at runtime. In many cases a conversion was

not required. However, if required, the two interconverting tools used are illustrated in Figure 11.

Combining these two tools enabled the creation of an OpenCPI component to interoperate with an

existing DDS application, and a DDS application to interoperate with an existing OpenCPI component.

Approved for Public Release; Distribution Unlimited.

19

The DDS developments used the open source community licensed version of PrismTech’s OpenSplice

DDS [15]. This implementation approach for the OpenCPI DDS external connection driver, as shown in

Figure 8, avoided requiring the generation of metadata-based code to make connections. The conversion

was made in the data path and not with the application level bridging/conversion code, and the amount of

the wire protocol code required was reduced from that originally generated by OpenSplice. The URL

format for external connections to DDS was developed for this project, since this standard did not

previously existed.

3.2.5 CORBA for External Connections of Component Ports.

Implementing a generic CORBA interoperation solution was not an original goal of this effort. During the

course of the project it was realized that a key building block for the Software Communications

Architecture (SCA) integration experiment was a simple external connection driver for CORBA which

used the standard corbaloc URLs for CORBA entities in the environment. This also provided a second

use case of external connections.

To stay within the scope of the project and the SCA integration experiment, the interoperation for

CORBA one-way operations was supported using the OpenCPI RDMA transport drivers. The more

general-purpose CORBA Object Request Broker (ORB) transport drivers were not supported.

3.3 Platform Adaptation and Enablement

To use the runtime aspects of OpenCPI on a processing platform, the runtime software modules must

support the processors and the processor interconnects. The processor runtime modules were called the

containers, and the interconnect runtime modules were called the dataplane drivers. The containers were

a combination of software proxies executing with the central core of the application and the actual

runtime environment that directly executed the components on the processor. Furthermore, the OpenCPI

control plane, which controlled the components, was configured from a central point of the application

management. This sometimes required its own type of interconnect support, which was different from the

dataplane support. The dataplane support conveyed the messages between the components.

Initially this project had one platform initiative, which was to enable a FPGA processing platform, and

was based on the Altera FPGAs in addition to the preexisting support for Xilinx FPGAs. An application

trade study introduced a new platform requirement, the Ettus N210.

DDS IDL

OpenCPI DDS Tool
DDS IDL->XML

OpenCPI Component Spec
Port Metadata (XML)

Have DDS IDL from external app,
need OpenCPI XML for component

definition:

OpenCPI Component Spec
Port Metadata (XML)

OpenCPI DDS Tool
XML->DDS IDL

DDS IDL

Have existing OpenCPI component,
want DDS IDL for external DDS app

Figure 8. Tools for Interconverting Metadata between OpenCPI and DDS

Approved for Public Release; Distribution Unlimited.

20

3.3.1 Altera FPGAs and Altera Stratix4 Development Platforms.

The goals were to enable the OpenCPI HDL infrastructure that had been previously developed for

OpenCPI Xilinx FPGAs to be transparently usable for Altera FPGAs. It was necessary to ensure that an

application software and the HDL code were not unaware of which type of FPGAs was used, and also

that a build flow worked on either of these vendor’s tool sets. Also, it was anticipated that other vendors

and tool sets would be added in the future. Runtime interoperability between the Xilinx and Altera

FPGAs was also developed, implemented and demonstrated.

The two fundamental subtasks were the on-chip infrastructure and tool-build flow. The development of

hese two subtasks proceeded in parallel. In Figure 9 is a description of the OpenCPI HDL build flow that

was implemented for the Altera FPGAs. Any piece of the HDL code, except for the topmost hardware

dependent layers, could be built for both the Xilinx and the Altera FPGAs using the same scripts. Most

primitives, workers and application subassemblies could also be built for either family of FPGAs. The full

chip files could then be built by targeting a full FPGA platform identifier. Here the Altera Stratix IV

development board utilizing PCI Express was selected for experimentation and development.

Figure 9. OpenCPI HDL Build Flow

The tooling effort, which was developed in parallel with the hardware-specific efforts, implemented the

scripted build flows to create a bitstream chip file. Similar to the existing Xilinx support, the build flow

took as its input the specifications to build the chip. The first specification was the target platform, which

was a specific FPGA part on a specific board. Also, the application consisted of a connected set of

workers, and the container indicated how the application was connected to the infrastructure on the chip.

Approved for Public Release; Distribution Unlimited.

21

While this seemed simple, the vendor’s scriptable command line tools each operated completely

differently. Furthermore, the command line scripting was considered by the vendors to be a secondary

usage model in preference to the Graphical User Interface (GUI)-centric modes. The resulting scripts

masked the vendor differences.

The platform IP was pre-synthesized with a single undefined reference to the application. The part’s

application IP was pre-synthesized as a connected collection of workers. Then the two synthesized

modules 2 2F

23
 were combined with a container, in a place-and-route step that created the chip level bitstream

configuration file. Finally, the metadata was embedded in the bitstream file that notified the runtime

library search mechanism of which workers and what connections were implemented in the bitstream.

There were two major challenges for the Altera platform hardware support work in creating the OpenCPI

device-dependent infrastructure, which were the attachments to the Peripheral Component Interconnect

(PCI) Express fabric and to the Dynamic Random-Access Memory (DRAM). In both cases the primary

Altera usage mode was to connect these devices to Altera’s own proprietary on-chip infrastructure. There

was no example source code for using these devices standalone. Although there was documentation for

the standalone usage, that documentation was not accurate.

A third-party hardware board, the HiTech Global PCI Express card with a Stratix 4 FPGA, was also

investigated, but the documentation for this was not sufficient, and additional efforts would have been

needed to complete this. This proved to be beyond the scope of this effort, and so was not pursued.

Additional effort then went into the investigation of a better-supported Altera development board.

The OpenCPI on-chip infrastructure is depicted in Figure 10. Only the Chip Specific Platform Logic

required changes for the Altera platform highlighted. The PCI Express, the DRAM in the Device

Workers Configured As-required and the Passive Parallel Synchronous (PPS) Time Base were relevant to

this effort. Other aspects of the Altera code did not require changes, which confirmed the code’s inherent

portability.

23

 Netlists contain descriptions of the parts/devices used.

Approved for Public Release; Distribution Unlimited.

22

Figure 10. OpenCPI FPGA On-chip Infrastructure

Approved for Public Release; Distribution Unlimited.

23

 FPGA Module/Board, Xilinx ML605

FPGA Chip: Xilinx Virtex6 xc6vlx240t

OpenCPI FPGA Infrastructure IP

SMA
Worker

Bias
Worker

SMA
Worker

 FPGA Module/Board, Altera ALST4

FPGA Chip: Altera Stratix4 ep4sgx230

OpenCPI FPGA Infrastructure IP

SMA
Worker

Bias
Worker

SMA
Worker

OpenCPI Portable DMA IP

OpenCPI Xilinx PCI Express Adapter

Xilinx PCI Express IP

PCI
Express

Switch

Host CPU (Intel)

Peer-to-peer
DMA

Altera PCI Express IP

OpenCPI Portable DMA IP

OpenCPI Altera PCI Express Adapter

Figure 11. Altera/Xilinx Interoperability Demonstration

The final demonstration of this Altera platform and the tool effort was to confirm that in the same system

the Altera and the Xilinx boards both interacted directly with each other over PCI Express. This

demonstration’s configuration is shown in Figure 11. This demonstration showed that the infrastructure

was working on both boards, and that the software drives 23F

24
 controlled both boards. The DMA and the PCI

fabrics were completely interoperable when data was streamed peer-to-peer over PCI Express. Also, the

DMA operated both to and from the system memory, and peer-to-peer when bypassing the system

memory.

3.3.2 Ettus N210 Platform.

The transition-application study phase was developed and demonstrated on the platform that was the

baseline platform for the Ettus Research N210 Universal Software Radio Peripheral application. This

application was essentially a radio front end that consisted of a Radio Frequency (RF) tuner/exciter, an

Analog-to-Digital Converter (ADC)/Digital-to-Analog Converter (DAC), a FPGA, and Ethernet

connections to the system where the software aspects of a radio application were executed on. Since the

original application did not utilize a DAC, this part of the platform was later de-emphasized. The Ettus

block diagram for this device is shown in Reference [16].

The key platform aspects that supported the OpenCPI development were the FPGA tasks and the software

tasks. The FPGA tasks primarily supported the Ethernet interface in the OpenCPI FPGA infrastructure,

the Ethernet itself, and the OpenCPI control plane over the Ethernet. Also, the OpenCPI data plane over

the Ethernet was supported, as well as the ADC device attached to the Spartan FPGA. Additionally, the

basis and the small Spartan 3A Xilinx FPGA were supported.

24

 with no changes for the Altera board

Approved for Public Release; Distribution Unlimited.

24

Since this FPGA platform was smaller and more resource-constrained than the previous OpenCPI FPGA

platforms, particular attention to the leanness was necessary for all these tasks. This platform was open

source hardware, and the technical data and vendor FPGA codes were available for development.

The ADC support leveraged the results of previous ADC efforts on other proprietary platforms. Here

though this platform was somewhat different in that the N210 ADC was designed as a quadrature ADC

with two ADC channels bonded to provide both In-phase (I) and Quadrature (Q) complex data.

Software support for the control plane and the data plane was added for the raw over link-layered

Ethernet. For the existing OpenCPI platforms, this was implemented with PCI Express. Other than the

dataplane driver for the datagram-based data-plane support, the major software development involved the

discovery and control of the Ethernet-based FPGAs. The associated OpenCPI Linux device driver

enhancements enabled raw Ethernet access to the Linux processes controlling the FPGAs via an Ethernet.

Device driver development was required to allow the user processors to access the raw Ethernet, which

would normally be privileged. Also, it allowed the incoming packets to be processed by the controlled

FPGA, which would normally be controlled by higher level protocols such as UDP/IP.

When this work was completed, OpenCPI was able to discover multiple FPGAs attached on a

combination of PCI Express and Ethernet in the same system. All platform support was successfully

completed, other than the FPGA side of the Ethernet-based data plane, which required some additional

effort.

3.4 Integration and Coexistence with Other Frameworks

Real applications sometimes need to combine the aspects of multiple frameworks to obtain all the

required functionality. This is especially common when a domain-specific code is available from a

framework that does not supply all of the necessary functionality. This project performed two

experiments in integrating other frameworks with OpenCPI, both specific to a particular domain. While

OpenCPI is certainly not domain-specific, it is focused on embedded systems, with application

functionality distributed across heterogeneous processing resources within that system.

3.4.1 Coexistence of OpenCPI with OpenCV.

The Open Source Computer Vision Library (OpenCV) is a library that includes hundreds of computer

vision algorithms that are written in C++. This large repertoire of computer vision and image processing

algorithms is a valuable resource for building computer vision and other image processing applications.

Originally it seemed that wrapping OpenCV algorithms as OpenCPI components could be combined with

other OpenCPI components, and then other technologies could be replace on a component-by-component

basis. However, OpenCV algorithms were not created in a component model. Since OpenCV frequently

used polymorphic data typing, where code was present to process and to interconvert multiple data types,

three integration scenarios were followed. The first scenario was to port code in OpenCV algorithms to

form new OpenCPI components. The second scenario was to combine OpenCV algorithms, and in

particular image I-Os and format conversions, with the OpenCPI components in the same application.

Finally, several applications were created that combined the OpenCV library with the OpenCPI

framework.

This resulted in twelve new OpenCPI components [17] with software RCC implementations that were

added to the OpenCPI component library, and three new applications that were added to the OpenCPI

repository of example applications. This work was done in conjunction with a sponsored graduate student

at the MIT Laboratory for Computer Science [7].

The algorithms ported from the OpenCV library into the OpenCPI component library were Sobel,

Sobel_32f, Canny, Blur, Erode, Dilate, Gaussian_Blur, Optical_Flow, Scharr, Good_features_to_track,

Min_eigen and Corner_eigen. These components were combined into three application examples that

directly used the OpenCV library for image conversion and I-O reading from files and displaying in

Approved for Public Release; Distribution Unlimited.

25

windows, and used the newly created OpenCPI components for image processing. The Canny Edge

Detection application (Figure 12), the Feature Detection application (Figure 13) and the Optical Flow

application (Figure 14) are shown in the following three diagrams, including which components that were

used in each of the applications, and how they were connected.

This process proved to be a good demonstration of the OpenCPI framework, and resulted in several

enhancements and bug fixing to OpenCPI. In particular, the optical flow application was used to stress

the multiprocessing/multi-core execution of OpenCPI.

OpenCPI “Control Application” Using OpenCV Library

OpenCPI RCC Container

Display!

Good(
Features

To Track

Image

Data

Corner

Eigen

Worker

Min

Eigen

Worker!

OpenCV

File

Reader

OpenCV

Image

Display

Control Application Connection between OpenCV and OpenCPI Container/Workers

Connections inside the OpenCPI Container (zero copy)

OpenCV Internal I/O

OpenCPI

Worker

OpenCV

Library

Function

Figure 12. Canny Edge Detection Application

Approved for Public Release; Distribution Unlimited.

26

OpenCPI “Control Application” Using OpenCV Library

OpenCPI RCC Container

Display!

Canny(
Worker

Image

Data

Sobel X

Worker!

Sobel Y

Worker!

OpenCV

File

Reader

OpenCV

Image

Display

Control Application Connection between OpenCV and OpenCPI Container/Workers

Connections inside the OpenCPI Container (zero copy)

OpenCV Internal I/O

OpenCPI

Worker

OpenCV

Library

Function

OpenCPI “Control Application” Using OpenCV Library

OpenCPI RCC Container

Display!

Good(
Features

To Track

Corner

Eigen

Worker

Min

Eigen

Worker!

OpenCV

Image

B

Optical

Flow

Worker!

OpenCV

File

Reader

Image A

 Sobel
X

 Sobel
X

 Sobel
Y

OpenCV

File

Reader

Image B

 Sobel
Y

 Sobel
Y

 Sobel
X

 Sobel
Y

Draw

Arrows

Figure 13. Feature Detection Application

Figure 14. Optical Flow Application

Approved for Public Release; Distribution Unlimited.

27

3.4.2 OpenCPI with SCA.

Software Communications Architecture (SCA) is a DoD-developed 24F

25
 framework for developing and

deploying software defined radio applications. It is a component-oriented framework for software-based

components based on using the CORBA for communications, and the Portable Operating System

Interface25F

26
 (POSIX) for operating system and runtime library services. It was designed for the software

radio domain, which are typically deployed in embedded radio systems.

Prior to becoming open source software, OpenCPI was used inside of and was dependent on an SCA

environment. During the open sourcing process this link was eliminated, which resulted in the OpenCPI

version being independent of the SCA. Also, the SCA had technical attributes that were rejected as

inappropriate26F

27
 for most embedded systems. This project took a new approach to this integration, and

investigated whether OpenCPI could be efficiently layered underneath an existing SCA environment

without the specific application giving up its inherent efficiency.

A SCA framework was selected that was open source and depended upon the open source CORBA

middleware. The selected SCA framework was Open source Software Communication Architecture

Implementation: Embedded (OSSIE) framework [18] from Virginia Tech, which was dependent on the

open source omniORB CORBA layer 27F

28
. Virginia Tech was a subcontractor that participated with this

integration.

In the chosen integration approach OpenCPI did not replace the SCA core framework, which was the

management and control center of the SCA environment. However, the key integration elements that were

implemented were a SCA Core Framework (CF) ExecutableDevice28F

29
 object for each of the implemented

OpenCPI containers, and a resource object that was an efficient control proxy for each worker. The

relationships of these elements are shown in Figure 15.

The integration of OpenCPI was controlled by and represented to the SCA control system. The OpenCPI

containers appeared as SCA executable devices, and the OpenCPI workers appeared as SCA resources,

regardless of whether these containers were executing on a FPGA, a GPU or a GPP.

Another important aspect of the SCA/OpenCPI integration was the data plane over which the components

communicated with each other. In the SCA the CORBA middleware was used for this. If two OpenCPI

workers were communicating with each other under the SCA control framework, these workers

communicated directly and efficiently with each other without using CORBA middleware. However,

under an SCA framework with OpenCPI, when an OpenCPI worker communicates with a normal SCA

component, this additional middleware was necessary.

25

 It is mandated for some programs.
26

 A family of standards specified by the IEEE for maintaining compatibility between operating systems.
POSIX defines the application programming interface (API), along with command line shells and utility
interfaces, for software compatibility with variants of Unix and other operating systems.
27

 e.g. CORBA
28

 a robust high performance CORBA ORB for C++ and Python
29

 Framework of operations for executing/terminating processes/threads on a device.

Approved for Public Release; Distribution Unlimited.

28

runTest, start, stop,
configure, query

GPP Environment

Target Processor

CF::ApplicationFactory

CF::Application

AssemblyController

CF::ExecutableDevice

Container

OpenCPI

Worker

runTest, start, stop,
configure, query

allocateCapacity,
load, execute

Generic Proxy

SCA CF Client

runTest, start, stop,
configure, query

Creates:

Load/create
(not CORBA)

Loads, creates, controls:

Control/config
(not CORBA)

!

!

Typically process-collocated with logical device

SCA

OpenCPI

Figure 15. SCA Layered on OpenCPI

In the approach represented in Figure 16 the efficiencies 29F

30
 of the OpenCPI data plane were not affected in

the OpenCPI environment and an adaptation from the OpenCPI dataplane to the CORBA middleware

layer was only needed when the CORBA-based SCA component was executing. This adaptation was

accomplished by writing a special transport plug-in for the omniORB 30F

31
 CORBA middleware which, when

the SCA component was communicating with an OpenCPI worker, achieved this using the lower level

drivers of the OpenCPI dataplane. The CORBA protocol General Inter-ORB Protocol (GIOP) headers

were synthesized at the receiving end.

Figure 16. Data Plane Adaptation in SCA Environments

30

 e.g. zero copy and DMA
31

 omniORB is a CORBA object request broker for C++ and Python.

Approved for Public Release; Distribution Unlimited.

29

SCA->OpenCPI
OpenCPI Metadata Generator (ocpisca tool)

SCA Modeling Tool
(e.g. SCARI/Prism)

(or XML editor)

SCA XML Files:
SCD: SW Component Descriptor

PRF: Property Descriptor

Message Protocol,
per “port”

Expressed in IDL

(from CORBA/e)

IDL Tool
(or

text editor)

SCA/SDR Tool Flow
(optional)

OpenCPI Code Generator Tool/Scripts

Component Spec
Metadata (OCS XML)

XML/text editor
for implementation-

specific

annotations

Worker Spec
Metadata (OWD XML)

This is common with other,
implementations

This expresses
implementation choices +

Figure 17. SCA - OpenCPI Metadata Generation

An example of the data plane interoperability solution was where an FPGA worker produces a simple

First In/First Out (FIFO) message burst at its data port that was not aware of what it is communicating

with, and the receiving SCA component received a CORBA method invocation at its data port. This ORB

transport plug-in approach had the additional benefit that the CORBA communications in the system

necessitated these drivers even when both sides of the communications were CORBA middleware

objects31F

32
.

The tools and the metadata must also be considered when integrating OpenCPI with the SCA. The XML-

based metadata described the components, and this metadata was required in both the development and

the runtime environments. When implementing the OpenCPI components to serve as embedded work-a-

likes to existing CORBA-based SCA components, the ocpisca tool [19] is used to create the OpenCPI

component metadata XML files OCS, and the OWD files from the analogous SCA files SPD, SCD, and

IDL. This tool flow is shown in Figure 17.

The opposite direction can be similarly and more easily automated using existing OpenCPI components

in an SCA environment by generating the SCA metadata from the OpenCPI metadata. Due to time

constraints, this latter automation was not completed in this project, but is straightforward since the

OpenCPI metadata is essentially a proper subset of the SCA metadata.

The limitations of this SCA integration approach were that the data port Interface Description Language

(IDL) was restricted to the embedded subset as defined by the Object Management Group/International

Organization for Standardizations (OMG/ISOs) CORBA/E micro profile. The control ports were SCA

standard, but a full control and data proxy was required for further customizations. When two components

were hard-wired to each other, OpenCPI pre-connected implementations required a patch to the core

framework. Previously the Harris and Software Communications Architecture Reference Implementation

32

 e.g., when there are multiple GPPs on a fabric like PCI Express.

Approved for Public Release; Distribution Unlimited.

30

(SCARI) Core Framework (CF), OIS Company, The ACE Orb (TAO), and VxWork’s Real Time

Operating System (RTOS) had been addressed. In this effort the open source Software Communication

Architecture Implementation Embedded (OSSIE) CF, omniORB, and Linux were addressed.

3.5 Ease of Use Improvements

A number of efforts were made here to simplify the process of developing, configuring and executing

applications using OpenCPI. Most of this is related to configuring an application to execute in a

heterogeneous processor environment.

3.5.1 Component Libraries in the Search Path.

To execute a logical OpenCPI application component it must be determined on which processor among

the available processors the application will be executed on. Also, it must be determined as to which

implementation, among available alternatives, should be used. When this project started, these decisions

were embodied in a top level main program called the Control Application, in which the APIs specified

for each component which binary file was to be executed, and which processor container it would execute

on. Thus the application code explicitly and directly specified these two decisions. This was simple at the

API level, but when an application was executed in different configurations that used different component

implementations, the Control Application was required to implement all the configuration alternatives in

an ad-hoc code.

The first effort to simplify this process was to have an implicit implementation selection using the very

common technique of a library search path. Search paths for executables and libraries are common in

many systems including Microsoft Windows, Linux and MacOS. The two environment variables that are

typically used are the path variable that indicates the locations of the executables and scripts, and the

library variables that indicate the possible locations of the dynamically loaded libraries.

Here these same techniques were developed for OpenCPI. The OCPI_LIBRARY_PATH environment

variable indicated an ordered sequence of directories that searched for the components’ implementation

binaries. This allowed the simplification of the component names, so that these directories were searched

for binary files that contained component implementations. The files found were then dynamically loaded

on the appropriate processor.

The knowledge of what components were implemented in each file, and what type of processor each

would execute on, was embedded in the binary files during the OpenCPI build process. These component

library directories were heterogeneous libraries that contained binary files for the different types of

processors that included FPGAs, GPUs, different GPPs, and different Operating Systems (OSs). As with

any library search path, a library can shadow other libraries by being earlier in the path. For example, a

library full of FPGA implementations might represent some accelerated versions of a more general-

purpose software-only library containing default software implementations of some of the components.

While component binaries represented one component implementation for one type of processor, the

component binaries actually contained multiple implementations for the same or different components.

These binaries were each written for a specific processor and that processor’s OS. Finally, a library

directory in the search path was recursively searched for the component binaries, so that an ad hoc

directory structure containing files and directories was a library.

The search process was optimized by caching the metadata in all of the component binary files that were

found in the path, so that a search for each component in the application could be rapidly completed. The

directories were only scanned once at the program startup. Further optimizations were possible to save

cache in the file system, which avoided directory searches during each program’s execution.

In a Linux shell, the following line of code set the component library search path:

export OCPI_LIBRARY_PATH=/home/me/fpga-impls:/syst/software-impls .

Approved for Public Release; Distribution Unlimited.

31

3.5.2 XML Applications without C
++

Coding.

The existing OpenCPI application control interface was a C
++

 API that specifically created and managed

the containers, applications and workers. Additionally, it connected and configured the workers. In the

main program the API programmatically constructed the application in the C
++

 control application. This

resulted in a control-application/main-program of several hundred lines of code. A newer, simpler, more

compacted and less error-prone XML-based description of applications was developed, and was a

significant ease-of-use enhancement.

The XML application format consisted of a top-level application element, with instance and connection

child elements. A copy application consisting of file reading and file writing workers is:

<application>

 <instance worker='file_read'>

 <property name='filename' value='hello.file'/>

 <property name='messageSize' value='4'/>

 </instance>

 <instance worker='file_write'>

 <property name='filename' value='out.file'/>

 </instance>

 <connection>

 <port instance='file_read' name='out'/>

 <port instance='file_write' name='in'/>

 </connection>

</application> .

This example had two workers, the file_read and the file_write, with the out-port of the file_read

connected to the in-port of the file_write. The filename property of the file_read worker was initialized to

the hello.file, and the filename property of the file_write worker was initialized to the out.file.

The more advanced features included a transport attribute of the connection element that indicated which

dataplane transport mechanism that was needed for the connection (OFED, TCP-IP, datagram-UDP, etc.).

The done attribute of an application element indicated which of the workers would acknowledge when the

application was completed. The external child element under the connection elements indicated if there

was an external, and not a worker port, aspect to the connection. A value file attribute of the property

element contained the name of the file that contained the textual initial value for the property. The value

attribute contained the textual value itself.

This XML application was used as a part of the new API and the new utility program. This new API was

added to allow a C
++

 control application to create an Application object from an XML string. This was a

C
++

 constructor for a new Application class. After construction, this new class included the initialize,

start and wait operations. An example of a main program using this new XML-based C
++

 API was:

Approved for Public Release; Distribution Unlimited.

32

int main(int argc, char **argv) {

 std::string

 hello("<application>"

 " <instance worker='file_read'>"

 " <property name='filename' value='hello.file'/>"

 " </instance>"

 " <instance worker='file_write'>"

 " <property name='filename' value='out.file'/>"

 " </instance>"

 " <connection>"

 " <port instance='file_read' name='out'/>"

 " <port instance='file_write' name='in'/>"

 " </connection>"

 "</application>");

 OCPI::API::Application app(hello);

 app.initialize(); // obtain all resources

 app.start(); // start execution

 app.wait(); // wait for workers to be finished

 return 0;

}

This C
++

 API allowed the program to construct and manipulate the XML prior to execution.

The other way that this new XML application was used was by putting the XML into a file, and using a

new utility program called ocpirun to execute it. When the above XML was in the file copy.xml, this shell

command executed:

 ocpirun copy.xml .

This utility program included the two options listed in Table 2.

Table 2. Utility Program Options

Option Description

-d Dump all properties of all workers after execution

-v Be verbose, describing the progress of execution

Approved for Public Release; Distribution Unlimited.

33

The combination of the XML form of application description, the C
++

 API for launching and controlling

such applications, and the utility program for executing them provided a simpler way for applications to

be constructed and executed. It is expected that this method will be the preferred one for future OpenCPI

applications.

3.5.3 Scoring Preferred Implementations.

A specific capability for choosing the best component implementation was also developed. Building on

the previous enhancement of searched and cached component libraries, the application specified an

optional implementation scoring selection expression for each of the application’s components. The

purpose of this expression was to specify the optimal choice among the alternative implementations when

more than one implementation was available. This capability also provided a way to specify the minimum

conditions for an acceptable implementation choice.

The expression was a normal expression in the syntax of the C language, with all the normal operators.

Logical expression a == 1 returned 1 on true, and 0 when false. The variables in the expression were

either component property values that had fixed implementation values, or special built-in identifiers that

indicated well-known implementation attributes. The special identifiers are listed in Table 3.

Table 3. Special Identifiers

Identifier Purpose Example

Model Implementation Authoring Model name rcc

Platform Platform the implementation is built for x86_64 or ml605

OS Operating system that the implementation is built for Linux

The value of the expression was considered an unsigned number, where a higher number was preferred to

a lower number, and zero was considered unacceptable. If the expression for an implementation had a

zero value, that implementation was not considered acceptable. A simple example is:

model==’’rcc’’ .

This indicates that the model was rcc, since otherwise the expression’s value would have been zero. The

example of

error_rate > 5 ? 2 : 1

indicated that the error rate property is relevant. If the error rate property is greater than 5, it is better than

if it were less than or equal to 5. However, a positive integer of equal to or less than 5 is still acceptable.

If there was no selection expression, then the score of the implementation would be 1.

Using the OpenCPI application control API, the implementation scoring expression is provided as the

selection parameter in the createWorker API. In the XML application specification that is described in

detail below, the selection expression is provided as the optional selection attribute of each component

instance. This application code

<application>

 <instance worker=‘‘psd" selection="latency < 5"/>

 <instance worker=‘‘demod" selection="model=='rcc'"/>

Approved for Public Release; Distribution Unlimited.

34

indicated that the psd worker required an implementation with latency > 5, and the demod instance

required an implementation with an Authoring Model of rcc. The implementation selection and scoring

features simplified the application’s preferences and requirements for each of its component.

3.5.4 Property Values for Complex Data Types.

The initial property values in the XML application forms were in a textual representation. While this was

trivial for the simple scalar values and strings, it was not available in OpenCPI for the advanced data

types such as multidimensional arrays, arrays of structures, etc. The initial OpenCPI capabilities for the

property data types were limited to those available in the SCA standard. While this ensured some cross-

framework compatibility, it also limited the number of the important use-cases. The enhancement

developed here provided an expansion of the possible property data types and the textual representations

in both XMLs and in APIs.

The data type enhancements expanded the property data types to the full data structure capabilities of the

Interactive Data Language (IDL) originally developed for CORBA and used for DDS. This data typing

system expanded beyond the simpler SCA standard. Examples of new added data types for component

properties included fixed size arrays, multidimensional arrays, arrays & sequences of structures, recursive

arrays, sequences and structures. These were set either directly in the XML value attribute of a property

element, placed in a file using the valuefile attribute of a property element, or were a C
++

 application

utilizing the setProperty method of the Application class.

3.5.5 Automating Worker Deployment.

A new capability was developed, implemented and demonstrated that automatically changed the number

of processors for an application by applying specific processor allocation policies. The original default

policy implemented a first fit algorithm that determined which container a worker would be executed on.

This algorithm was guided and constrained by the selection and scoring mechanism that was described

earlier. To achieve the ability to automatically change the number of processors that were to be

implemented, three policies were followed. Each worker was assigned to a container/processor/core in a

round robin fashion. A minimum number of containers were used, which increased the collocation. A

fixed maximum number of processors were employed in a round robin fashion.

The new default policy was to first use all of the available containers, and to spread the workers across the

containers in a round-robin allocation. Software-based containers [10] originally used one CPU core, but

multi-core processors allow the possibility of one container on each processor.

To support a bounded number of processors for the application the maxProcessors policy was

implemented, which indicated by setting the maxProcessors attribute in the application XML to the

number desired. For example, to set the maximum number of processors to 3, this code was developed:

 <application maxProcessors="3"> .

Similarly, the minProcessors policy reused containers when possible, using the minimum number to

execute the application using minimal resources.

3.6 Testing Capabilities

A number of efforts were undertaken to mature OpenCPI by improving the core infrastructure test

capabilities. This was extended to include the application and component developments.

3.6.1 Unit Test Framework for Infrastructure Code.

Although there were a number of ad-hoc tests for aspects of the OpenCPI infrastructure, a standard

harness was necessary for creating and executing the unit tests of the infrastructure code. A number of

open-course unit test frameworks were tested for C
++

, and the most appropriate candidate was selected.

Approved for Public Release; Distribution Unlimited.

35

That test framework was incorporated as a unit test framework, and a number of existing tests were

migrated and ported into it.

The motivation for selecting a unit test framework was to improve and enforce the consistency of test

development, how the defects were reported, and how the tests were executed. Also, it was desired that

there was a reduction in the complexity required to write the tests, which would then encourage more tests

to be developed. Candidates needed to be open source software with licenses compatible with OpenCPI,

and needed to support C
++

 software development language with exception handling. Also, the candidates

needed to be highly portable with minimum environment, OS and other package dependencies. Finally,

these open source candidates needed to be actively maintained.

Based on these criteria, the frameworks Boost.Test, CppUnit, CppUnitLite, Google Test (gtest), Unit
++

,

NanoCppUnit, and CxxTest were evaluated, and the results are summarized in Table 4.

Table 4. Unit Test Framework Evaluations

 Frameworks

 Boost.Test CppUnit CppUnitLite GoogleTest NanoCppUnit Unit
++

 CxxTest

License Okay Good Good Okay Good Good Good

New tests Good Bad Good Good Good Bad Good

Fixture Okay Okay Bad Good Good Okay Good

Suite Okay Okay Bad Okay Okay Okay Okay

Exception Good Okay Bad Good Bad Okay Good

Assert Good Okay Okay Good Okay Okay Okay

Reporting Bad Good Okay Good Bad Bad Okay

Portability Bad Okay Good Good Bad Okay Okay

Activity Okay Okay Bad Good Bad Bad Bad

Approved for Public Release; Distribution Unlimited.

36

From the results presented in Table 4, the GoogleTest (gtest) was determined to be the best alternative, as

it was actively maintained and the test creation was easy and compact. Also, it had good error and

exception reporting. The gtest measured the time to execute a test case and reported it, which allowed the

determination of execution timings. Continuous Integration Server for Frequent Builds.

To facilitate a community of developers and users, a continuous integration server was selected and

configured to build and test OpenCPI (Figure 18). This server executed the building and testing on

several system configurations, and made results available on a web-based dashboard that included the

status of OpenCPI. Having such a status dashboard abetted the determination of which versions of code

were stable on which platforms, and provided an archive of which systems had previously been built and

tested.

Back
plan
e

The Cloud/
Internet

Component/
Application

Developers

Core/
Infrastructure

maintainers

Platform
variant

developers

Tire Kickers,
experiments,

potential users

System/
Project

integrators

Use public test
resources to ensure
wide portability,
performance metrics

Use public test
resources to ensure
reliable evolution and
enhancements A clear, dynamic, and

complete view of
technology and platform

stability and support

Ensure that your
platforms get tested and
measured by all available
apps and tests, as core
and apps evolve

Low effort continuous
testing for custom
configurations and
platforms

OpenCPI
DashBoard

System

Figure 18. Continuous Build/Test Dashboard Users

There were no unexpected browser requirements for the viewing and the configuration of this dashboard.

The building and the testing can be on different systems. Community members can contribute hardware

for performing the builds and the tests. Very heterogeneous system testing was enabled, which included

mixing different technologies, different configurations, multiple platforms, and proprietary-custom

technologies with multiple platform configurations. Software/component/applications were sometimes

tested on systems that were not owned by the tester, and to which the tester did not necessarily have

access to.

The Hudson system is an open source continuous integration tool written in Java. Since renamed the

Jenkins system [8], the Hudson system met the required criteria, was portable in that it was written in

Java, and included within it the concept of multidimensional configuration matrix builds and distributed

build slaves. This meant that it automated the traversal of a configuration matrix to build many systems

and configurations, and determined the build slave system, which could be located anywhere on the

internet. It could also build for any given configuration.

Approved for Public Release; Distribution Unlimited.

37

In Figure 19 is presented a screenshot of the web page for viewing a configuration matrix job, in which

the individual circles turn red or green as the builds and tests are successfully or unsuccessfully

accomplished. Several slave systems are shown from which combinations of systems can be built.

Figure 19. Continuous Build/Test Dashboard Configuration

One key feature of Jenkins that facilitated a community was that the users could make available a

particular system configuration as a building and testing slaves at specific times, i.e. between 2 AM and 4

AM. This resulted in their configurations being available for testing by others when they were not using

them.

Approved for Public Release; Distribution Unlimited.

38

3.6.2 Unit Test Capabilities for Heterogeneous Components.

As part of the trade study to port the components of the Frequency Shift Keying (FSK) application, it was

determined that this process would be accelerated if a common unit test capability was available for

components. This resulted in a component tool and method components being developed and included in

the unit testing component library.

The unitTest utility program created and executed the OpenCPI applications that served as each

component’s test bench mark. It supported components that were typical signal processing components

that had single-input-single-output topologies. Test data was sent to the components, and the output to a

known good output data set was compared. The new output was compared with the variance-from-

known-good-output.

The options provided by this heterogeneous unit test utility included which Authoring Model was to be

tested32F

33
, what the numerical acceptance threshold was, and what other property values to apply to the

worker that was being tested. This method tested different implementations of the same component.

The OpenCPI component libraries contained the specification file labeled with an extension .OWD in a

common subdirectory directory, and then each component implementation would be placed into its own

subdirectory named <component-name>.<authoring-model>. For example, the RCC 33F

34
 model of the

framegate component was placed in a subdirectory named framegate.rcc, and the OpenCL (OCL)-based

GPU model was in a subdirectory named framegate.ocl. Since the unit test for each component was

heterogeneous, it was located in a subdirectory named framegate.test. For most components, the only

contents in the “<component>.test directory would be the scripts to execute the unitTest utility with the

appropriate parameters. When the unitTest utility was not used, i.e. when the component had features that

required a more customized test bench, this directory would contain the customized unit test program,

which was a variant of unitTest. Customized test benches then tested the different implementations.

3.6.3 Protocol Monitors for FPGA Components Witten with the HDL Model.

While the unit test tools above served to test the components in a technology-independent manner, and

tested whether the resulting data was correct, the HDL implementations executing on FPGAs and in

simulators also required testing at a lower level. The external interfaces of the OpenCPI HDL workers

utilized the OCP-IP interfacing definitions as profiled for OpenCPI. These interfaces were called Worker

Interface Profiles (WIPs), and were defined in the reference manual for the OpenCPI HDL Authoring

Model [19]. To confirm that an HDL worker correctly obeyed the wire-level protocols defined in the

WIPs 34F

35
, the concept and implementation of WIP Protocol Monitors were introduced.

A WIP Protocol Monitor was an FPGA module that was inserted as a passive observer on an interface

between two workers, or between the OpenCPI HDL infrastructure and a worker. It verified that the

correct signaling and/or monitor events were occurring at the interface, and then the outputted the series

of events that it had observed.

Two WIP protocol monitors were implemented, one for the Worker Control Interface (WCI) and one for

the Worker Streaming Interface (WSI). A Capture Worker was implemented to capture the event outputs

of the protocol monitors. The Protocol Monitors and the Capture Workers are shown in Figure 20.

The Protocol Monitors observed the interfaces either in real hardware or in a simulation environment, and

reported the events as output messages on their respective WSI output interfaces. Each monitor was

connected to a Capture Worker that time-stamped and stored the events in its respective private memory.

33

 RCC vs. HDL vs. OCL
34

 written in C Language
35

 i.e., the protocol of the data and control signals at each interface.

Approved for Public Release; Distribution Unlimited.

39

After execution, the software read the stored events. This information was used to assess any protocol

violations and to measure the performance.

Figure 20. Protocol Monitors and Capture Workers

Approved for Public Release; Distribution Unlimited.

40

4.0 RESULTS

This project focused on closing several technical gaps, including issues associated with the ease of use,

maturity improvements and application experiments. Each effort tested both the premise of OpenCPI’s

value and the suitability of the actual existing implementation of tools and runtime. The results were fully

captured in the evolved and enhanced version of OpenCPI residing in the Open Source Repository at the

Opencpi.org website. The OpenCPI tools, runtime infrastructure, components, applications, and

documentation were all expanded and improved.

4.1 Performance and Time Measurement

The project requirements motivated the use of tools, many of which were oriented towards understanding

the relative timing of events in the parts of the OpenCPI system. Some of these tools were focused on the

component and the application developments, while others were focused on the measurement and fine-

tuning of the infrastructure. This section describes in more detail these measurement-related efforts.

4.1.1 OCL Authoring Model Measurements.

In the course of developing the OCL-GPU Authoring Model, several measurements of code complexities

were made, which were determined in terms of the Source Lines of Code (SLOC). The SLOC is a

software metric that measures the size of a computer program by counting the number of lines in the text

of the program's source code. The SLOC is one estimate of the programming productivity of a software

code. Three application codes were generated with both OpenCL and OCL. The results of the respective

SLOC measurements are presented in Table 5.

The three applications that were compared were Vector Addition, 1-Dimensional Fast Fourier Transform

(FFT), and Matrix Multiply. The host SLOC for the OCL was technology independent, as the same host

code was applied to components written in either model. The host SLOC for OpenCL was specific to

OpenCL. Regardless of the components size, the additional lines of the kernel codes and of the XML

codes were modest. Recent enhancements have reduced this further.

Table 5. OCL SLOC

 Applications

 Vector Addition 1-D FFT Matrix Multiply

Code OpenCL OCL OpenCL OCL OpenCL OCL

Host* 277/49 204/19 301/37 200/15 498/51 239/19

Kernel 9 22 905 918 91 104

XML 0 11 0 15 0 11

*The Host is the total SLOC/relevant SLOC.

Approved for Public Release; Distribution Unlimited.

41

Table 6. OCL Model Execution Time Comparisons

 Applications

 Vector Addition 1D-FFT Matrix Multiply

 OpenCL OCL OpenCL OCL OpenCL OCL

Execution Time

(msec)
28.66 28.66 880.64 880.65 8.21 8.21

Notes

• Vector length 11.5

million 32-bit floats

• I-O bound

• NVIDIA kernel

• 1024 1K 1D FFTs

• 400 GFLOPS

(5*NLog2(N)

• I-O bound

• Kernel from Apple SDK

• Dimensions

 A(800 x 1600),

 B(800 x 800),

 C(800 x 1600)

• I-O Bound (250

GFLOPS)

• NVIDIA kernel

Another set of measurements that were taken were the execution times for these applications. Table 6 lists

these measured execution times. Based upon these results, the OCL performance as measured in

execution times for the codes written with OpenCL and OCL were, within experimental error, the same.

4.1.2 Event Capture Synchronization across Platforms.

The OpenCPI system was designed for multiple processing platforms including CPUs, GPUs, FPGAs and

GPPs. To properly measure system timing, a timing infrastructure provided the timing of the events

through synchronization across the complete system. The results of a common timing capability are

addressed here.

While an application-level timekeeping clock time required a common clock time, capturing the relative

time across a system did not. Time across a system required an understanding of the relationships

between the clocks used on the different platforms. Several techniques were experimented with to achieve

this.

For FPGA platforms OpenCPI had a built-in measurement mechanism to understand the round-trip time

for a GPP to access a FPGA’s registers using load and store instructions across the control plane. This

was used to accurately capture the difference between the clocks on the GPP and on the FPGA.

On the GPP Linux itself, the CPU’s high-speed clock, which executed at GHz, executed independently of

the system time obtained via the OS APIs. Here each platform component entity had a local clock. The

relative behaviors of the clocks were measured. The local times were timestamped, and during post-

processing the respective timestamps were normalized to single timescale.

The post-processing of event data sorted all of the events into a common timeline, and also converted the

data to a standard event timing format used by hardware simulators. This was viewed with the open

source simulation viewer GTKWave, as shown in the screen shot Figure 21.

Approved for Public Release; Distribution Unlimited.

42

Figure 21. Viewing Timed Events with the GTKWave

4.2 Application and Component Examples

During the course of the project several components and applications were developed from components,

and these were placed in the open source repository as examples for future users. In addition to the

OpenCV applications and components that have been described, twelve additional components and three

additional applications were developed and tested.

To demonstrate the implementation selection and scoring capabilities, a best-fit application and a set of

simple sine wave generation components were developed and tested. To illustrate how an application

executed different implementations of the same component specifications, an application was executed

that requested different distortion and throughput values, and the infrastructure automatically selected

different implementations. When the acceptable distortion increased, a higher throughput implementation

was used.

4.2.1 Frequency Shift Key Radio Application.

The final phase of the project was to take an existing DoD application and do a comparison by first

executing its original code on its original platform. That code was then to be re-engineered and re-

implemented with OpenCPI, and then re-executed on the same platform.

An agreement was made with a government agency to execute the Frequency Shift Key (FSK)/ Radio on

its intended platform, which was the N210 platform. The platform-enabling work was completed while

waiting for the application to arrive.

The original application was ultimately not available in an unclassified form, and an alternative

application was received to be executed on the original N210 platform. However, the supplied

unclassified code was incomplete due to proprietary restrictions, and only some of the code was

executable. The FSK modem application was a send and receives radio waveform that is described in

Figure 22.

Approved for Public Release; Distribution Unlimited.

43

All of the executable component implementations had been written in software. This configuration

represented the functionality of the delivered VHDL code plus the file I-O, which received data from a

file for the modulation, and then stored the demodulated received data in another file. The loopback

component was used in testing without the actual ADC/DAC hardware. This loopback configuration was

executed for testing purposes. In the complete application, which was not received due to proprietary

restrictions, there was an additional DSP code that performed the pulse-shaping of the data before the

modulation, and then performed the baud tracking. Also, in the real hardware platform, further up/down

Intermediate Frequency (IF) and Radio Frequency (RF) conversions were based on other hardware

proprietary controls.

To make the best of the situation, the application as received was re-engineered as an OpenCPI

application in which the component definitions were created for all of the components, and the software

implementations were created for all of the components except for the DSP code. An example application

named fsk_modem was created that executed all the components with separate software and FPGA

implementations. This was executed in a software-only environment. However, since the test data and the

test vectors were not received, the software versions of the components were not verified as being

numerically correct.

The components that were created for the application were the Symmetric Filter Real, the Symmetric

Finite Impulse Response (FIR) Filter Complex, the FSK Modulation, the Cascade Integrator-Comb (CIC)

High Pass Filter, the Loopback35F

36
, the Noise Generator36F

37
, the DDS Frequency Generator, the Mixer, the

CIC Low Pass Filter, and the Frequency Modulation (FM) Demodulator.

36

 which emulate DAC->ADC
37

 which injected Gaussian noise

DAC!

Test

Data

FSK

Modulator!

Real

Symmetric

256-Tap FIR

File-

read

Complex

Symmetric

256-Tap FIR

CIC Up-

Sampler!

Loopback

Noise

Adder!

CIC

Down-

Sampler!

Complex

Symmetric

256-Tap FIR

FM

Demod!

Real

Symmetric

256-Tap FIR

File-

write

Test

Data

ADC!

Figure 22. FSK Radio Application

Approved for Public Release; Distribution Unlimited.

44

The VHDL source code was analyzed as part of the plan to use the HDL Authoring Model FPGA workers

to wrap VHDL codes. These workers were based upon the same component specifications that the

software implementations were written to. Since all of the original code was VHDL, the HDL Authoring

Model for VHDL was enhanced to meet these needs. Compliable VHDL skeletons that were generated

for the VHDL components were based on the component definitions created during the re-engineering

process.

This application was completed for the execution of all the components, the software implementations,

and the VHDL skeletons for the HDL components. The wrapped and functional FPGA components were

incomplete.

A number of enhancements depended on third party technology, some of which was not open source and

some of which was hardware. In these cases the results would require any user or developer to obtain,

install and possibly purchase this other technology. Some of these were also developed and tested against

a particular version of third part technology, but there was no further support for keeping it up to date. In

these cases updates may be required to exercise the enhancements.

4.2.2 Documentation.

Finally, a number of these tasks were essentially proof-of-concept efforts that established OpenCPI’s

feasibility and suitability, but require additional efforts to achieve complete functionality and

performance. A generic Authoring Model Reference [20] was developed that specifies the concepts of

OpenCPI.

The OpenCPI’s internal software architecture allowed most major modules to be optionally executed as

runtime drivers. A user can configure and use only the modules needed. There are four types of plug-in

driver modules, which are the containers, the RDMA/Internal dataplane, the Message/External dataplane,

and the library. This project delivered one new container driver, the OCL for GPUs, and one dramatically

enhanced container, the HDL for fully discoverable Ethernet-based FPGAs. Also, three new

RDMA/Internal Dataplane drivers were developed, the OFED, the RDMA-over-UDP, and the RDMA-

over-Ethernet. There were two new Message/External Dataplane drivers, DDS and the one-way CORBA

for SCA. A library driver model was created as one of the ease-of-use tasks, and one library driver that

executed a typical search path and a directory hierarchy was developed.

Lower level platform infrastructure models were developed on the platforms, including the two newest

FPGA platforms, the Altera Stratix4 development PCI-Express board and the Ettus N210

Xilinx/Spartan3A on Ethernet w/ADC/DAC. The hardware-specific modules that make up these

OpenCPI platforms are now also OpenCPI. A Linux kernel driver for both low-level PCI-based

access/DMA and privileged Ethernet-level protocol processing was fully implemented. It was based on an

earlier skeletal prototype.

In addition to the major runtime modules, this project created and enhanced the nine development tools

listed Table 7. To provide examples and tests for users, and as a result of the integration experiments,

fifteen new applications were developed, along with the thirty components used in them. These are useful

not only as application building blocks, but also as regression tests.

Approved for Public Release; Distribution Unlimited.

45

Table 7. Development Tools

Name Purpose

ocpidds new Interconverting DDS and OpenCPI metadata

ocpiocl
new Compiling OpenCL source code to vendor-specific binaries

ocpigen updates Generating code skeletons major updates for VHDL and OCL

timeCvt
new Generating standard VCD files for event/waveform viewing

ocpisca
update Generating OpenCPI metadata from SCA metadata

scripts
new Building HDL code for Altera

scripts
new Building OCL code for OpenCL

scripts
new Building HDL VHDL code (vs. Verilog).

spreadsheet template
new Analyzing performance data

This work motivated other opportunistic improvements to all of the aspects of OpenCPI, and these

improvements are in hundreds of code files. As a result of this project OpenCPI is appropriate and usable

to more users, has more configurations, and addresses more technologies.

A summary of the open source documentation that was created by this and its preceding effort that is

available on the OpenCPI website [2] is presented in Table 8.

Approved for Public Release; Distribution Unlimited.

46

Table 8. Open Source Documentation

PDF File Description

OpenCPI_Technical_Summary.pdf Provides an overview of the OpenCPI technology and architecture along

with introductory material common to the other OpenCPI reference

documents.

OpenCPI_Generic_Authoring_Mod

el.pdf

Specifies the concept of an OpenCPI authoring model, and defines aspects

common to all OpenCPI authoring models.

OpenCPI_CDK_Reference.pdf Describes the OpenCPI Component Development Kit which is a collection

of command line and "make" level tools for developing OpenCPI

components (workers).

OpenCPI_Application_Control_Inte

rface.pdf

Describes the C++ interface for launching and controlling OpenCPI

application.

OpenCPI_RCC_Reference.pdf The purpose of this document is to define the OpenCPI RCC Authoring

Model.

OpenCPI_OCL_Reference.pdf The purpose of this document is to define the OpenCPI OCL (OpenCL)

Authoring Model.

OpenCPI_HDL_Reference.pdf The purpose of this document is to define the OpenCPI HDL Authoring

Model.

OpenCPI_HDL_App_Workers.pdf This document describes the HDL application workers in the OpenCPI

component library.

OpenCPI_HDL_Device_Workers.p

df

This document describes OpenCPI HDL device workers, which are IP

blocks for FPGAs that on the "front" side present standard OpenCPI WIP-

profile interfaces for use by applications, and on the "back" side attach to

external devices via pins of the FPGA.

OpenCPI_HDL_Infrastructure.pdf This document describes the OpenCPI infrastructure IP blocks and how they

are used as the platform for OpenCPI applications on FPGAs.

OpenCPI_Time_Performance.pdf Describes the OpenCPI absolute time service and the time and performance

instrumentation (TMPI) profiling API.

OpenCPI_RDMA_Protocol.pdf This document is a functional specification for the OpenCPI data plane

RDMA data transfer protocol (OCPIRDT).

OpenCPI_Reference_Platform_Spec

ification.pdf

Describes the OpenCPI Reference Platform in detail. The document provides

a parts list for the most recent reference platform along with the software

configuration on the system. The document also details the steps needed to

bring up the FPGA board with an OpenCPI bitstream.

CP289_v1_0.pdf
Proposed modification to the JTRS SCA specification to support specialized

hardware processors.

Approved for Public Release; Distribution Unlimited.

47

5.0 CONCLUSIONS

The purpose of OpenCPI was to exploit and manage diverse technologies in embedded systems. This

project increased the coverage of embedded systems by supporting technology diversity and component-

based development. Some of the key relevant attributes of these types of systems included component

based architectures with their associated plug & play, reuse, and integration benefits. These component

based systems included well-defined, open, and portable application programming environments for

embedded, heterogeneous, and multi-processor applications. Also included were Metadata descriptor

formats for the application structure, the deployment, the constraints, the connectivity and the hardware

platform elements. A control plane model included a control from within an application through a

Human/Computer Interface (HCI) and from a remote control that was outside of the application. A

management model was developed for the install/upgrade/uninstall and the startup/shutdown of the

application and hardware subsystems. Support from commercial off the shelf design and development

tools was also addressed.

Several applications and components were developed as examples. Contributions were made to the

Authoring Models for different processing technologies, which added support for GPUs as an OpenCPI

processing resource. The platform adaptation and enablement added support for the Altera FPGA

platforms and tools. The support of data transport technology allowed for the Optical Fabrics Enterprise

Distribution (OFED)/Infiniband usage for inter-component dataflow. The integration and coexistence

with other frameworks demonstrated the usage of OpenCPI with the Open Computer Vision (OpenCV)

library. The development of the ease-of-use enhancements allowed simple Extensible Markup Language

(XML)-based applications to be adopted with component implementation preferences. The development

of the application and component libraries supported search paths of the heterogeneous component

libraries. The performance measurements supported event synchronization across the independent

subsystems.

The underlying OpenCPI baseline architecture was a software-defined platform, originally motivated by

the Department of Defense (DoD) Programmable Communication Terminals. It was originally based on

and was compliant with the Software Communication Architecture (SCA) developed in the Joint Tactical

Radio System (JTRS) program [4].

The specific baseline software platform that was developed had capabilities in several areas critical to the

embedded DoD needs, including communications management that was suitable for fabric-based

interconnection technologies. The control model did not require the related data plane overhead. The

standardized integration of functions on FPGAs and Digital Signal Processors (DSPs) did not require any

additional middleware. A standards-based portability model for FPGA applications was developed that

was Hardware Description Language (HDL) independent and met the industry standard Open Core

Protocol-International Partnership (OCP-IP) specifications. A scalable controlled data plane approach was

developed for multi-processing configurations.

In addition to these technical enhancements, several integration and application experiments were

performed to assess and demonstrate how OpenCPI could coexist with other relevant frameworks for

image and software radio processing, and how well OpenCPI served as an application environment for

specific applications. These efforts included instrumentation and measurements.

Since OpenCPI was based on and embraced the principles of open source software, the software,

firmware, FPGA codes, tools, and documentation were all posted on the Opencpi.org web site and

released under an open source license. The key technical results of this work were embodied in the new

and improved evolution of OpenCPI, as it addressed a combination of technical gap filling, hardening and

ease-of-use enhancements.

Outreach and community building exposed OpenCPI to additional users inside and outside of the defense

and intelligence communities. Some of this was based on ad hoc meetings and briefings, but there were a

Approved for Public Release; Distribution Unlimited.

48

number of specific events and workshops where OpenCPI was briefed at conferences. The community

building was supported by meetings, test development, and web development, and was highlighted by a

workshop at the Wireless Innovation Forum meeting.

This project addressed the key functional gaps in the original open source prototype that inhibited the

adoption of OpenCPI. The technology was harden and matured to increase the Technology Readiness

Level (TRL). The barriers to OpenCPI development, testing, adoption and implementation were

addressed, and the suitability for specific applications was determined. The documentation of this effort

was significant, and the feedback was positive. Based on the support of the dataplane drivers, the GPU

containers and the FPGA platforms, patterns for supporting new technologies have emerged.

Approved for Public Release; Distribution Unlimited.

49

6.0 RECOMMENDATIONS

Based on experience and conclusions of this project, and the fact that interest and experience are growing,

it is believed that further efforts and investments are warranted. However, new efforts specifically

targeted at OpenCPI should not be research oriented, but rather focused on establishing a solid, perpetual

open source community with critical mass to stay up to date with the relevant technologies.

Modest government support is justified to maintain a baseline and provide confidence and credibility.

There are numerous examples of government support for baseline governance and maintenance of such a

resource. Building and maintaining a repository of components and platform support drivers would be

beneficial to the community. Other sponsored projects for particular technologies should be based on

specific needs of users, projects and programs.

The specific goals of the application trade study are still very much valid. The bulk of the platform and

application re-engineering work was completed, and additional efforts in the platform and VHDL support

took the place of the part of the application study work that could not be undertaken. Finishing this work

would be value, feasible, and modest, although the proprietary platform baseline is still an issue.

More and more developers assume a GUI-centered development process, and building the appropriate

technical bridges to enable the OpenCPI component and application development to take place in the

Eclipse environment would improve its acceptance. The government-sponsored RedHawk framework is

an example of this, but there are others. Even commercial open source packages such as Code-Sorcery

(now part of Mentor Graphics) may be a good integration target. Similarly, building technical integration

bridges with MatLab developments, or the open source Octave equivalent, would allow OpenCPI to

connect with other aspects of the overall application development process.

Several areas of additional technological development would be valuable, including but not limited to

multilevel security, Tilera many-cores, Eclipse Integration, and GPU Direct Memory Access (DMA). The

availability of perpetual testing, continuous integration, additional tutorial examples, driver

documentation, bug-tracking and road-mapping would be invaluable. A clearer path is needed for new

developers to contribute to these and similar technology drivers.

The ease-of-use focus on applications and components did not apply to the driver development, which is

still only available to OpenCPI experts. While the internal architecture has evolved to facilitate these

drivers, additional guidance and/or documentation needs to be developed.

While there were enthusiastic early users in electronic warfare and signals intelligence, the OpenCPI

community is currently finite. The dominant community building focus was to incubate several different

embedded communities. A number of useful tools, technologies and practices were identified and tested

for testing platforms, components, and applications. Continual institutionalizing, monitoring, and

managing OpenCPI are beyond the scope of this project. Now what is needed is a perpetual and

comprehensive development and testing community that would keep all of the developed functionality

fresh and current.

Further study relating to the acquisition issues for embedded development is warranted. While the

application trade study intended to look at a particular application and how it would be improved when

using OpenCPI methodology, this does not capture the benefits of component-based design and the open

source heterogeneous platform support across multiple projects and programs. The commercial barriers

to sharing at this level are significant and costly. An ecosystem of support services that can support

multi-vendor heterogeneous platforms is a key ingredient. This is not so much a technical initiative as a

policy challenge that deserves further attention.

Approved for Public Release; Distribution Unlimited.

50

7.0 REFERENCES

1. Scott, III, J.M., “Open Component Portability Infrastructure (OPENCPI) ,” AFRL-RI-RS-TR-

2009-257, Mercury Federal Systems, Inc., Arlington, VA, Nov 2009.

2. Kulp, J., “OpenCPI- Open Component Portability Infrastructure,” URL: http://opencpi.org/.

Accessed Feb 6, 2013.

3. Kulp, J., “OpenCPI Technical Summary,” URL: https://github.com/the_Opencpi/the

Opencpi/raw/master/doc/OpenCPI_Technical_Summary.pdf. Accessed January 16, 2013.

4. Global Security, “Joint Tactical Radio System Programmable, Modular Communications

Systems,” URL: http://www.globalsecurity.org/military/systems/ground/jtrs.htm. Accessed

February 7, 2013.

5. Siegel, S. and Kulp, J., “OpenCPI HDL Infrastructure Specification,” URL:

https://github.com/the_Opencpi/theOpencpi/raw/master/doc/OpenCPI_HDL_Infrastructure.pdf.

Accessed February 4, 2013.

6. Miller, J. and Kulp, J., “OpenCPI RDMA Protocol Specification,” URL:

https://github.com/the_Opencpi/theOpencpi/raw/master/doc/ OpenCPI_RDMA_Protocol.pdf.

Accessed February 4, 2013.

7. Liu, T.J., “A Real-Time Computer Vision Library for Heterogeneous Processing Environments,”

MIT, MS Thesis, 2010. URL:

http://dspace.mit.edu/bitstream/handle/1721.1/66439/755631660.pdf.

8. Blewitt, A., “Hudson Renames to Jenkins,” URL: http://www.infoq.com/news/2011/01/jenkins,

January 31, 2011. Accessed February 7, 2013.

9. Kulp, J. and Miller, J., “OpenCPI RCC Authoring Model Reference,” URL:

https://github.com/the_Opencpi/theOpencpi/raw/master/doc/ OpenCPI_RCC_Reference.pdf.

Accessed February 4, 2013.

10. Sridhar, N. and Hallstrom, J.O., “Generating Configurable Containers for Component-Based

Software,” Proceedings of the 6
th
 Component-Based Software Engineering Workshop at ICSE

2003, Portland, OR, May 3-4, 2003.

11. Ketcham, C., Kulp, J. and Pepe, M. “OpenCPI OCL Authoring Model Reference,” URL:

https://github.com/the Opencpi/the Opencpi/raw/master/doc/OpenCPI_HDL_Reference.pdf.

Accessed February 7, 2013.

12. Kulp, J., “OpenCPI Application Control Interface Specification,” ,” URL: https://github.com/the

Opencpi/the Opencpi/raw/master/doc/OpenCPI_Application_Control_Interface.pdf. Accessed

February 4, 2013.

13. Pepe, M. and Kulp, J., “OpenCPI Component Developer Kit (CDK) Reference,” ,” URL:

https://github.com/the Opencpi/the Opencpi/raw/master/doc/ . Accessed February 4, 2013.

14. Open Source Alliance, “OpenFabrics Alliance Software Being Utilized by More than 44 Percent

of the TOP500 Systems,” URL: http://www.hpcwire.com/hpcwire/2010-11-

16/openfabrics_alliance_software_being_utilized_by_more_than_44_percent_of_the_to.500_syst

ems.html. Accessed February 7, 2013.

15. PrismTech, “OpenSplice DDS,” URL: http://www.prismtech.com/opensplice. Accessed February

7, 2013.

Approved for Public Release; Distribution Unlimited.

51

16. Ettus Research, “USRP N200/N210 Networked Series,” URL:

https://www.ettus.com/content/files/07495_Ettus_N200-210_DS_Flyer_HR_1.pdf. Accessed

February 12, 2013.

17. Pepe, M., and Kulp, J., “OpenCPI Component Developer Kit (CDK) Reference,” URL:

https://github.com/the Opencpi/the Opencpi/raw/master/doc/The OpenCPI_CDK_Reference.pdf.

Accessed February 7, 2013.

18. Kiat, C.L.W., Software Defined Radio Design for an IEEE 802.11a Transceiver using Open

Source Software Communications Architecture (SCA) Implementation::Embedded (OSSIE),

URL: http://www.amazon.com/Transceiver-Communications-Architecture-Implementation-

ebook/dp/B007PU5S28#_ Kindle Edition (2012).

19. Kulp, J. and Siegel, S., “OpenCPI HDL Authoring Model Reference Manual,” URL:

https://github.com/theOpencpi/theOpencpi/raw/master/doc/OpenCPI_HDL_Device_Workers.pdf.

Accessed February 4, 2013.

20. Kulp, J., “OpenCPI Generic Authoring Model Reference,” URL: https://github.com/the

Opencpi/the Opencpi/raw/master/doc/OpenCPI_Generic_Authoring_Model.pdf. Accessed

February 4, 2013.

Approved for Public Release; Distribution Unlimited.

52

8.0 LIST OF SYMBOLS, ABBREVATIONS, AND ACRONYMS

ACI Application Control Interface

ADC Analog-to-Digital Converter

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BSV Bluespec System Verilog

CBD Component-Based Development

CDK Component Developer’s Kit

CentOS Community Enterprise Operating System

CF Core Framework

CIC Cascade Integrator-Comb

CORBA Common Object Request Broker Architecture

COTS Commercial off the Shelf

CPU Central Processing Unit

CSV Comma Separated Value (file format)

CUDA Compute Unified Device Architecture

DAC Digital to Analog Converter

DDC Digital Down-Converter

DDS Data Distribution Service

DG DataGram

DMA Direct Memory Access

DoD Department of Defense

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processor

FCCM Field-Programmable Custom Computing Machines

FIFO First In/First Out

FIR Finite Impulse Response

FM Frequency Modulation

FPGA Field Programmable Gate Array

Approved for Public Release; Distribution Unlimited.

53

FSK Frequency Shift Keying

FST Fast Simulator Trace

GBE GigaBit Ethernet

GFLOPS 10
9
 FLoating-point Operations per Second

GIOP General Inter-ORB Protocol

GPGPU General Purpose Graphics Processing Unit

GPP General Purpose Processor

GPU Graphics Processing Unit

GUI Graphical User Interface

HCI Human/Computer Interface

HDL Hardware Description Language

I In-phase

IDL Interface Description Language

IF Intermediate Frequency

IO Input-Output

IP Internet Protocol

ISO International Organization for Standardization

iWARP Internet Wide Area RDMA Protocol

JTRS Joint Tactical Radio System

L2 Link layer

LGPL Lesser GNU Public License

LXT interLaced eXtensible Trace

MILS Multiple Independent Levels of Security

MIT Massachusetts Institute of Technology

MPI Message Passing Interface

NFS Network File System

NIC Network Interface Card

OCL OpenCL Authoring Model

OCP-IP Open Core Protocol — International Partnership

Approved for Public Release; Distribution Unlimited.

54

OFED Open Fabrics Enterprise Distribution

omniORB a robust high performance CORBA ORB for C++ and Python

OpenCL Open Computing Language

OpenCPI Open source Component Portability Infrastructure

OpenCV Open Computer Vision

OpenGL Open Graphics Library

OMG Object Management Group

ORB Object Request Broker

OS Operating System

OSSIE Open source Software Communication Architecture Implementation: Embedded

PCI Peripheral Component Interconnect

POSIX Portable Operating System Interface

PPS Passive Parallel Synchronous

Q Quadrature

RCC Resource-Constrained C-language

RDMA Remote Direct Memory Access

RF Radio Frequency

RHEL Red Hat Enterprise Linux

RoCCE RDMA over Converged Enhanced Ethernet

SCA Software Communications Architecture

SCARI Software Communications Architecture Reference Implementation

SDR Software Defined Radio

SIGINT Signals Intelligence

SLOC Source Lines of Code

Soft-

RoCEE

Soft-RDMA over the Converged Enhanced Ethernet

SWAP Size, Weight, and Power

TCP Transmission Control Protocol

TRL Technology Readiness Level

Approved for Public Release; Distribution Unlimited.

55

UDP User Datagram Protocol

UML Unified Modeling Language

URL Universal Resource Locator

UUID Universal Unique Identifier

VCD Value Change Dump (file format)

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VZT Verilog/VHDL Zipped Trace

WCI Worker Control Interface

WIP Worker Interface Profile

WSI Worker Streaming Interface

XML Extensible Markup Language

